The Complexity of Zero-Visibility Cops and Robber

  • Dariusz Dereniowski
  • Danny Dyer
  • Ryan M. Tifenbach
  • Boting Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8497)


In this work we deal with the computational complexity aspects of the zero-visibility Cops and Robber game. We provide an algorithm that computes the zero-visibility copnumber of a tree in linear time and show that the corresponding decision problem is NP-complete even for the class of starlike graphs.


Rooted Tree Linear Time Algorithm Path Decomposition Node Search Search Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bienstock, D., Seymour, P.: Monotonicity in graph searching. Journal of Algorithms 12, 239–245 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs. Student Mathematical Library, vol. 61. American Mathematical Society (2011)Google Scholar
  3. 3.
    Clarke, N.E., MacGillivray, G.: Characterizations of k-copwin graphs. Discrete Mathematics 312, 1421–1425 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Dereniowski, D., Dyer, D., Tifenbach, R.M., Yang, B.: Zero-visibility cops and robber game on a graph. In: Fellows, M., Tan, X., Zhu, B. (eds.) FAW-AAIM 2013. LNCS, vol. 7924, pp. 175–186. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Dereniowski, D., Dyer, D., Tifenbach, R.M., Yang, B.: Zero-visibility cops & robber and the pathwidth of a graph. Journal of Combinatorial Optimization (2014)Google Scholar
  6. 6.
    Ellis, J.A., Sudborough, I.H., Turner, J.S.: The vertex separation and search number of a graph. Information and Computing 113, 50–79 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Fomin, F.V., Heggernes, P., Mihai, R.: Mixed search number and linear-width of interval and split graphs. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 304–315. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Gustedt, J.: On the pathwidth of chordal graphs. Discrete Applied Mathematics 45, 233–248 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Jeliazkova, D.: Aspects of the cops and robber game played with incomplete information. Master’s thesis, Acadia University (2006)Google Scholar
  10. 10.
    Kinnersley, N.G.: The vertex separation number of a graph equals its path-width. Information Processing Letters 42, 345–350 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kinnersley, W.B.: Cops and robbers is EXPTIME -complete. arXiv.1309.5405 [math.CO] (2013)Google Scholar
  12. 12.
    Megiddo, N., Hakimi, S.L., Garey, M., Johnson, D., Papadimitriou, C.H.: The complexity of searching a graph. Journal of the ACM 35, 18–44 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Mathematics 43, 235–239 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Parsons, T.: Pursuit-evasion in a graph. In: Proceedings of the International Conference on the Theory and Applications of Graphs. Lecture Notes in Mathematics, vol. 642, pp. 426–441. Springer (1978)Google Scholar
  15. 15.
    Quilliot, A.: Problèmes de jeux, de point fixe, de connectivité et de représentation sur des graphes, des ensembles ordonnés et des hypergraphes. PhD thesis, Université de Paris VI (1983)Google Scholar
  16. 16.
    Tang, A.: Cops and robber with bounded visibility. Master’s thesis, Dalhousie University (2004)Google Scholar
  17. 17.
    Tošić, R.: Inductive classes of graphs. In: Proceedings of the Sixth Yugoslav Seminar on Graph Theory, pp. 233–237. University of Novi Sad (1985)Google Scholar
  18. 18.
    West, D.B.: Introduction to Graph Theory, 2nd edn. Pearson (2000)Google Scholar
  19. 19.
    Yang, B., Zhang, R., Cao, Y.: Searching cycle-disjoint graphs. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA. LNCS, vol. 4616, pp. 32–43. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dariusz Dereniowski
    • 1
  • Danny Dyer
    • 2
  • Ryan M. Tifenbach
    • 2
  • Boting Yang
    • 3
  1. 1.Dept. of Algorithms and System ModelingGdańsk University of TechnologyPoland
  2. 2.Dept. of Mathematics and StatisticsMemorial University of NewfoundlandCanada
  3. 3.Dept. of Computer ScienceUniversity of ReginaCanada

Personalised recommendations