Advertisement

A Novel Privacy-Preserving Group Matching Scheme in Social Networks

  • Jialin Chi
  • Zhiquan Lv
  • Min Zhang
  • Hao Li
  • Cheng Hong
  • Dengguo Feng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8485)

Abstract

The group service allowing users with common attributes to make new connections and share information has been a crucial service in social networks. In order to determine which group is more suitable to join, a stranger outside of the groups needs to collect profile information of group members. When a stranger applies to join one group, each group member also wants to learn more about the stranger to decide whether to agree to the application. In addition, users’ profiles may contain private information and they don’t want to disclose them to strangers. In this paper, by utilizing private set intersection (PSI) and a semi-trusted third party, we propose a group matching scheme which helps users to make better decisions without revealing personal information. We provide security proof and performance evaluation on our scheme, and show that our system is efficient and practical to be used in mobile social networks.

Keywords

Social Networks Group Matching Private Set Intersection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Wang, B., Li, B., Li, H.: Gmatch: Secure and privacy-preserving group matching in social networks. In: GLOBECOM, pp. 726–731 (2012)Google Scholar
  3. 3.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive ot and secure computation of set intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private databases. In: SIGMOD, pp. 86–97 (2003)Google Scholar
  9. 9.
    Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to association rule mining. Journal of Computer Security 13(4), 593–622 (2005)Google Scholar
  10. 10.
    Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Kim, M., Lee, H.T., Cheon, J.H.: Mutual private set intersection with linear complexity. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 219–231. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Dong, C., Chen, L., Camenisch, J., Russello, G.: Fair Private Set Intersection with a Semi-trusted Arbiter. IACR Cryptology ePrint Archive, p. 252 (2012)Google Scholar
  14. 14.
    Yang, Z., Zhang, B., Dai, J., Champion, A.C., Xuan, D., Li, D.: E-smalltalker: A distributed mobile system for social networking in physical proximity. In: IEEE ICDCS, pp. 468–477 (2010)Google Scholar
  15. 15.
    Lu, R., Lin, X., Liang, X., Shen, X.: A secure handshake scheme with symptoms-matching for mhealthcare social network. Mobile Networks and Applications 16(6), 683–694 (2011)CrossRefGoogle Scholar
  16. 16.
    Li, M., Cao, N., Yu, S., Lou, W.: Findu: Privacy-preserving personal profile matching in mobile social networks. In: IEEE INFOCOM, pp. 2435–2443 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jialin Chi
    • 1
    • 2
  • Zhiquan Lv
    • 1
    • 2
  • Min Zhang
    • 1
  • Hao Li
    • 1
  • Cheng Hong
    • 1
  • Dengguo Feng
    • 1
  1. 1.Trusted Computing and Information Assurance Laboratory, Institute of SoftwareChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations