Online Knapsack Revisited

  • Marek Cygan
  • Łukasz Jeż
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8447)


We investigate the online variant of the Multiple Knapsack problem: an algorithm is to pack items, of arbitrary sizes and profits, in k knapsacks (bins) without exceeding the capacity of any bin. We study two objective functions: the sum and the maximum of profits over all bins. Both have been studied before in restricted variants of our problem: the sum in Dual Bin Packing [1], and the maximum in Removable Knapsack [7, 8]. Following these, we study two variants, depending on whether the algorithm is allowed to remove (forever) items from its bins or not, and two special cases where the profit of an item is a function of its size, in addition to the general setting.

We study both deterministic and randomized algorithms; for the latter, we consider both the oblivious and the adaptive adversary model. We classify each variant as either admitting O(1)-competitive algorithms or not. We develop simple O(1)-competitive algorithms for some cases of the max-objective variant believed to be infeasible because only 1-bin deterministic algorithms were considered for them before.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azar, Y., Boyar, J., Favrholdt, L.M., Larsen, K.S., Nielsen, M.N., Epstein, L.: Fair versus unrestricted bin packing. Algorithmica 34(2), 181–196 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Azar, Y., Khaitsin, E.: Prompt mechanism for ad placement over time. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 19–30. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Ben-David, S., Borodin, A., Karp, R.M., Tardos, G., Wigderson, A.: On the power of randomization in online algorithms. Algorithmica 11(1), 2–14 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: On the advice complexity of the knapsack problem. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 61–72. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press (1998)Google Scholar
  6. 6.
    Chekuri, C., Gamzu, I.: Truthful mechanisms via greedy iterative packing. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 56–69. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Iwama, K., Taketomi, S.: Removable online knapsack problems. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 293–305. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Iwama, K., Zhang, G.: Online knapsack with resource augmentation. Information Processing Letters 110(22), 1016–1020 (2010)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kalyanasundaram, B., Pruhs, K.: Maximizing job completions online. J. of Algorithms 49(1), 63–85 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer (2004)Google Scholar
  11. 11.
    Lueker, G.S.: Average-case analysis of off-line and on-line knapsack problems. J. Algorithms 29(2), 277–305 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems. Math. Program. 68, 73–104 (1995)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Martello, S., Toth, P.: Knapsack problems. John Wiley & Sons (1990)Google Scholar
  14. 14.
    Noga, J., Sarbua, V.: An online partially fractional knapsack problem. In: Proc. of the 8th Int. Symp. on Parallel Architectures, Algorithms, and Networks (ISPAN), pp. 108–112 (2005)Google Scholar
  15. 15.
    Sgall, J.: Private communication (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marek Cygan
    • 1
  • Łukasz Jeż
    • 2
    • 3
  1. 1.Institute of InformaticsUniversity of WarsawPoland
  2. 2.Inst. of Computer ScienceUniversity of WrocławPoland
  3. 3.Dept. of Computer, Control, and Management EngineeringSapienza University of RomeItaly

Personalised recommendations