Multichannel Spectral Image Enhancement for Visualizing Diabetic Retinopathy Lesions

  • Pauli Fält
  • Masahiro Yamaguchi
  • Yuri Murakami
  • Lauri Laaksonen
  • Lasse Lensu
  • Ela Claridge
  • Markku Hauta-Kasari
  • Hannu Uusitalo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8509)

Abstract

Spectral imaging is a useful tool in many fields of scientific research and industry. Spectral images contain both spatial and spectral information of the scene. Spectral information can be used for effective visualization of the features-of-interest. One approach is to use spectral image enhancement techniques to improve the diagnostic accuracy of medical image technologies like retinal imaging. In this paper, two multichannel spectral image enhancement methods and a technique to further improve the visualization are presented. The methods are tested on four multispectral retinal images which contain diabetic retinopathy lesions. Both of the methods improved the detectability and quantitative contrast of the diabetic lesions when compared to standard color images and are potentially valuable for clinicians and automated image analyses.

Keywords

spectral image multispectral imaging principal component analysis enhancement retina diabetes mellitus diabetic retinopathy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shaw, G.A., Burke, H.K.: Spectral imaging for remote sensing. Lincoln Laboratory Journal 14, 3–28 (2003)Google Scholar
  2. 2.
    Kukkonen, S., Kälviäinen, H., Parkkinen, J.: Color features for quality control in ceramic tile industry. Opt. Eng. 40, 170–177 (2001)CrossRefGoogle Scholar
  3. 3.
    Li, Q., He, X., Wang, Y., Liu, H., Xu, D., Guo, F.: Review of spectral imaging technology in biomedical engineering: Achievements and challenges. J. Biomed. Opt. 18, 100901-1–100901-28 (2013)Google Scholar
  4. 4.
    Alberti, K.G.M.M., Zimmet, P.Z.: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and Classification of Diabetes Mellitus. Provisional Report of a WHO Consultation. Diabet. Med. 15, 539–553 (1998)Google Scholar
  5. 5.
    Fong, D.S., Aiello, L., Gardner, T.W., King, G.L., Blankenship, G., Cavallerano, J.D., Ferris III, F.L., Klein, R.: Retinopathy in Diabetes. Diabetes Care 27, s84–s87 (2004)Google Scholar
  6. 6.
    Hashimoto, N., Murakami, Y., Bautista, P.A., Yamaguchi, M., Obi, T., Ohyama, N., Uto, K., Kosugi, Y.: Multispectral image enhancement for effective visualization. Opt. Express 19, 9315–9329 (2011)CrossRefGoogle Scholar
  7. 7.
    Mitsui, M., Murakami, Y., Obi, T., Yamaguchi, M., Ohyama, N.: Color enhancement in multispectral image using the Karhunen-Loeve transform. Opt. Rev. 12, 69–75 (2005)CrossRefGoogle Scholar
  8. 8.
    Nuffer, L.L., Medvick, P.A., Foote, H.P., Solinsky, J.C.: Multispectral/ hyperspectral image enhancement for biological cell analysis. Cytom. Part A 69A, 897–903 (2006)CrossRefGoogle Scholar
  9. 9.
    Hollaus, F., Gau, M., Sablatnig, R.: Enhancement of multispectral images of degraded documents by employing spatial information. In: 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 145–149 (2013)Google Scholar
  10. 10.
    Yang, C., Lu, L., Lin, H., Guan, R., Shi, X., Liang, Y.: A fuzzy-statistics-based principal component analysis (FS-PCA) method for multispectral image enhancement and display. IEEE Trans. Geosci. Remote Sensing 46, 3937–3947 (2008)CrossRefGoogle Scholar
  11. 11.
    Fält, P., Hiltunen, J., Hauta-Kasari, M., Sorri, I., Kalesnykiene, V., Pietilä, J., Uusitalo, H.: Spectral imaging of the human retina and computationally determined optimal illuminants for diabetic retinopathy lesion detection. J. Imaging Sci. Technol. 55, 030509-1–030509-10 (2011)Google Scholar
  12. 12.
    Tzeng, D.-Y., Berns, R.S.: A review of principal component analysis and its applications to color technology. Color Res. Appl. 30, 84–98 (2005)CrossRefGoogle Scholar
  13. 13.
    Wyszecki, G., Stiles, W.S.: Color science: Concepts and methods, quantitative data and formulae. John Wiley & Sons, Inc., New York (1982)Google Scholar
  14. 14.
    Peli, E.: Contrast in complex images. J. Opt. Soc. Amer. 7, 2032–2040 (1990)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pauli Fält
    • 1
  • Masahiro Yamaguchi
    • 2
  • Yuri Murakami
    • 2
  • Lauri Laaksonen
    • 3
  • Lasse Lensu
    • 3
  • Ela Claridge
    • 4
  • Markku Hauta-Kasari
    • 1
  • Hannu Uusitalo
    • 5
  1. 1.School of ComputingUniversity of Eastern FinlandJoensuuFinland
  2. 2.Global Scientific Information and Computing CenterTokyo Institute of TechnologyMidori-ku, YokohamaJapan
  3. 3.Machine Vision and Pattern Recognition LaboratoryLappeenranta University of TechnologyLappeenrantaFinland
  4. 4.School of Computer ScienceUniversity of BirminghamBirminghamUK
  5. 5.Department of Ophthalmology, SILK,University of Tampere, School of MedicineUniversity of TampereTampereFinland

Personalised recommendations