Design and Creation of a Multi-illuminant Scene Image Dataset

  • Imtiaz Masud Ziko
  • Shida Beigpour
  • Jon Yngve Hardeberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8509)


Most of the computational color constancy approaches are based on the assumption of a uniform illumination in the scene which is not the case in many real world scenarios. A crucial ingredient in developing color constancy algorithms which can handle these scenarios is a dataset of such images with accurate illumination ground truth to be used both for estimating the parameters and for evaluating the performance. Such datasets are rare due to the complexity of the procedure involved in capturing them. To this end, we provide a framework for capturing such dataset and propose our multi-illuminant scene image dataset with pixel-wise accurate ground truth. Our dataset consists of 6 different scenes under 5 illumination conditions provided by two or three distinctly colored illuminants. The scenes are made up of complex colored objects presenting diffuse and specular reflections. We present quantitative evaluation of the accuracy of our proposed ground truth and show that the effect of ambient light is negligible.


Color Constancy Multi-illuminant Dataset 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnard, K., Martin, L., Coath, A., Funt, B.: A comparison of computational color constancy algorithms. ii. experiments with image data. IEEE Transactions on Image Processing 11(9), 985–996 (2002)CrossRefGoogle Scholar
  2. 2.
    Beigpour, S., Riess, C., van de Weijer, J., Angelopoulou, E.: Multi-illuminant estimation with conditional random fields. IEEE Transactions on Image Processing 23(1), 83–95 (2014)CrossRefGoogle Scholar
  3. 3.
    Bianco, S., Ciocca, G., Cusano, C., Schettini, R.: Improving color constancy using indoor–outdoor image classification. IEEE Transactions on Image Processin 17(12), 2381–2392 (2008)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Brainard, D.H., Freeman, W.T.: Bayesian color constancy. JOSA A 14(7), 1393–1411 (1997)CrossRefGoogle Scholar
  5. 5.
    Ciurea, F., Funt, B.: A large image database for color constancy research. In: Color and Imaging Conference, pp. 160–164. Society for Imaging Science and Technology (2003)Google Scholar
  6. 6.
    Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: ACM SIGGRAPH 2008 Classes, p. 31. ACM (2008)Google Scholar
  7. 7.
    Fairchild, M.D.: Color appearance models. John Wiley & Sons (2013)Google Scholar
  8. 8.
    Finlayson, G.D., Hubel, P.M., Hordley, S.: Color by correlation. In: Color and Imaging Conference, pp. 6–11. Society for Imaging Science and Technology (1997)Google Scholar
  9. 9.
    Forsyth, D.A.: A novel algorithm for color constancy. International Journal of Computer Vision 5(1), 5–35 (1990)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Funt, B., Shi, L.: The rehabilitation of maxrgb. In: Color and Imaging Conference, vol. 2010, pp. 256–259. Society for Imaging Science and Technology (2010)Google Scholar
  11. 11.
    Funt, B.V., Finlayson, G.D.: Color constant color indexing. IEEE Transactions on Pattern Analysis and Machine Intelligenc 17(5), 522–529 (1995)CrossRefGoogle Scholar
  12. 12.
    Gehler, P.V., Rother, C., Blake, A., Minka, T., Sharp, T.: Bayesian color constancy revisited. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)Google Scholar
  13. 13.
    Gevers, T., Smeulders, A.W.: Color-based object recognition. Pattern Recognition 32(3), 453–464 (1999)CrossRefGoogle Scholar
  14. 14.
    Gijsenij, A., Gevers, T.: Color constancy using natural image statistics. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)Google Scholar
  15. 15.
    Gijsenij, A., Gevers, T., Van De Weijer, J.: Computational color constancy: Survey and experiments. IEEE Transactions on Image Processing 20(9), 2475–2489 (2011)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Gijsenij, A., Lu, R., Gevers, T.: Color constancy for multiple light sources. IEEE Transactions on Image Processing 21(2), 697–707 (2012)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Kraft, J.M., Brainard, D.H.: Mechanisms of color constancy under nearly natural viewing. Proceedings of the National Academy of Sciences 96(1), 307–312 (1999)CrossRefGoogle Scholar
  18. 18.
    Parraga, C., Baldrich, R., Vanrell, M.: Accurate mapping of natural scenes radiance to cone activation space: a new image dataset. In: Conference on Colour in Graphics, Imaging, and Vision, pp. 50–57. Society for Imaging Science and Technology (2010)Google Scholar
  19. 19.
    Van De Weijer, J., Gevers, T.: Color constancy based on the grey-edge hypothesis. In: IEEE International Conference on Image Processing, ICIP 2005, vol. 2, pp. II–722. IEEE (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Imtiaz Masud Ziko
    • 1
  • Shida Beigpour
    • 1
  • Jon Yngve Hardeberg
    • 1
  1. 1.The Norwegian Colour and Visual Computing LaboratoryGjøvik University CollegeGjøvikNorway

Personalised recommendations