Efficient Mechanism for Discontinuity Preserving in Optical Flow Methods

  • Nelson Monzón
  • Javier Sánchez
  • Agustín Salgado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8509)


We propose an efficient solution for preserving the motion boundaries in variational optical flow methods. This is a key problem of recent TV-L 1 methods, which typically create rounded effects at flow edges. A simple strategy to overcome this problem consists in inhibiting the smoothing at high image gradients. However, depending on the strength of the mitigating function, this solution may derive in an ill-posed formulation. Therefore, this type of approaches is prone to produce instabilities in the estimation of the flow fields. In this work, we modify this strategy to avoid this inconvenience. Then, we show that it provides very good results with the advantage that it yields an unconditionally stable scheme. In the experimental results, we present a detailed study and comparison between the different alternatives.


Optical Flow Motion Estimation TV-L1 Variational Method Discontinuity-preserving 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Álvarez, L., Esclarín, J., Lefébure, M., Sánchez, J.: A PDE model for computing the optical flow. In: XVI Congreso de Ecuaciones Diferenciales y Aplicaciones, C.E.D.Y.A. XVI, Las Palmas de Gran Canaria, Spain, pp. 1349–1356 (1999)Google Scholar
  2. 2.
    Ayvaci, A., Raptis, M., Soatto, S.: Sparse occlusion detection with optical flow. International Journal of Computer Vision 97(3), 322–338 (2012)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. In: International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar
  4. 4.
    Black, M.J., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding 63(1), 75–104 (1996)CrossRefGoogle Scholar
  5. 5.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Cohen, I.: Nonlinear Variational Method for Optical Flow Computation. In: Proceedings of the 8th Scandinavian Conference on Image Analysis, Tromso, Norway, pp. 523–530. IAPR (1993)Google Scholar
  7. 7.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  8. 8.
    Meinhardt-Llopis, E., Snchez, J., Kondermann, D.: Horn-Schunck Optical Flow with a Multi-Scale Strategy. Image Processing on Line, 151–172 (2013), http://dx.doi.org/10.5201/ipol.2013.20
  9. 9.
    Monzón López, N., Sánchez, J., Salgado de la Nuez, A.: Optic flow: Improving discontinuity preserving. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2013, Part II. LNCS, vol. 8112, pp. 117–124. Springer, Heidelberg (2013)Google Scholar
  10. 10.
    Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transanctions on Pattern Analysis and Machine Intelligence 8, 565–593 (1986)CrossRefGoogle Scholar
  11. 11.
    Sánchez, J., Meinhardt-Llopis, E., Facciolo, G.: TV-L1 Optical Flow Estimation. Image Processing on Line, 137–150 (2013), http://dx.doi.org/10.5201/ipol.2013.26
  12. 12.
    Sánchez, J., Monzón, N., Salgado, A.: Robust Optical Flow Estimation. Image Processing on Line, 242–260 (2013), http://dx.doi.org/10.5201/ipol.2013.21
  13. 13.
    Wedel, A., Cremers, D., Pock, T., Bischof, H.: Structure- and motion-adaptive regularization for high accuracy optic flow. In: Proceedings of IEEE International Conference on Computer Vision, pp. 1663–1668 (September 2009)Google Scholar
  14. 14.
    Xu, L., Jia, J., Matsushita, Y.: Motion Detail Preserving Optical Flow Estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1293–1300 (June 2010)Google Scholar
  15. 15.
    Zach, C., Pock, T., Bischof, H.: A Duality Based Approach for Realtime TV-L1 Optical Flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nelson Monzón
    • 1
  • Javier Sánchez
    • 1
  • Agustín Salgado
    • 1
  1. 1.Department of Computer ScienceUniversity of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations