Toward a Complete Inclusion of the Vector Information in Morphological Computation of Texture Features for Color Images

  • Andrey Ledoux
  • Noël Richard
  • Anne-Sophie Capelle-Laizé
  • Christine Fernandez-Maloigne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8509)


In this paper, we explore an original way to compute texture features for color images in a vector process. To do it, we used a dedicated approach for color mathematical morphology using distance function. We show in this paper the scientific construction of morphological spectra and preliminary results using Outex database.


Color image texture features vector information 


  1. 1.
    Arvis, V., Debain, C., Berducat, M., Benassi, A.: Generalization of the cooccurrence matrix for colour images: application to colour texture classification. Image Analysis and Stereology 23(1), 63–72 (2004)CrossRefGoogle Scholar
  2. 2.
    Angulo-Lopez, J., Serra, J.: Modelling and segmentation of colour images in polar representations. Image and Vision Computing 25(4), 475–495 (2007)CrossRefGoogle Scholar
  3. 3.
    Aptoula, E.: Comparative study of moment based parameterization for morphological texture description. Journal of Visual Communication and Image Representation (2012)Google Scholar
  4. 4.
    Hanbury, A., Serra, J.: Morphological operators on the unit circle. IEEE Transactions on Image Processing 10(12), 1842–1850 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Ledoux, A., Richard, N., Capelle-Laizé, A.S., et al.: The fractal estimator: A validation criterion for the colour mathematical morphology. In: 6th European Conference on Colour in Graphics, Imaging, and Vision, pp. 206–210 (2012)Google Scholar
  6. 6.
    Louverdis, G., Vardavoulia, M.I., Andreadis, I., et al.: A new approach to morphological color image processing. Pattern Recognition 35(8), 1733–1741 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Mandelbrot, B.B.: Fractals: Form, Chance, and Dimension. W.H. Freeman and Company (1977)Google Scholar
  8. 8.
    Matheron, G.: Random sets and integral geometry. John Wiley & Sons Inc., New York (1975)Google Scholar
  9. 9.
    Ojala, T., Pietikinen, M., Menp, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  10. 10.
    Peleg, S., Naor, J., Hartley, R., et al.: Multiple résolution texture analysis and classification. IEEE PAMI 6, 518–523 (1984)CrossRefGoogle Scholar
  11. 11.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. I. Academic Press (1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andrey Ledoux
    • 1
  • Noël Richard
    • 1
  • Anne-Sophie Capelle-Laizé
    • 1
  • Christine Fernandez-Maloigne
    • 1
  1. 1.Université de Poitiers, XLIM-SIC UMR CNRS 7252Futuroscope CedexFrance

Personalised recommendations