Cross-Domain Sentiment Analysis Using Spanish Opinionated Words

  • M. Dolores Molina-González
  • Eugenio Martínez-Cámara
  • M. Teresa Martín-Valdivia
  • L. Alfonso Ureña-López
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8455)

Abstract

A common issue of most of NLP tasks is the lack of linguistic resources in languages different from English. In this paper is described a new corpus for Sentiment Analysis composed by hotel reviews written in Spanish. We use the corpus to carry out a set of experiments for unsupervised polarity detection using different lexicons. But, in addition, we want to check the adaptability to a domain for the lists of opinionated words. The obtained results are very promising and encourage us to continue investigating in this line.

Keywords

Sentiment Polarity Detection Spanish Opinion Mining Spanish hotel review corpus domain adaptation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Molina-González, M.D., Martínez-Cámara, E., Martín-Valdivia, M.T., Perea-Ortega, J.M.: Semantic orientation for polarity classification in spanish reviews. Expert Systems with Applications 40(18), 7250–7257 (2013)CrossRefGoogle Scholar
  2. 2.
    Ye, Q., Zhang, Z., Law, R.: Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. Expert Syst. Appl. 36(3), 6527–6535 (2009)CrossRefGoogle Scholar
  3. 3.
    Shi, H.X., Li, X.J.: A sentiment analysis model for hotel reviews based on supervised learning. In: 2011 International Conference on Machine Learning and Cybernetics (ICMLC), vol. 3, pp. 950–954 (July 2011)Google Scholar
  4. 4.
    Dehkharghani, R., Yanikoglu, B., Tapucu, D., Saygin, Y.: Adaptation and use of subjectivity lexicons for domain dependent sentiment classification. In: 2012 IEEE 12th International Conference on Data Mining Workshops (ICDMW), pp. 669–673 (December 2012)Google Scholar
  5. 5.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, pp. 168–177. ACM, New York (2004)CrossRefGoogle Scholar
  6. 6.
    Demiroz, G., Yanikoglu, B., Tapucu, D., Saygin, Y.: Learning domain-specific polarity lexicons. In: 2012 IEEE 12th International Conference on Data Mining Workshops (ICDMW), pp. 674–679 (December 2012)Google Scholar
  7. 7.
    Wang, H., Lu, Y., Zhai, C.: Latent aspect rating analysis on review text data: A rating regression approach. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2010, pp. 783–792. ACM, New York (2010)Google Scholar
  8. 8.
    Taboada, M., Grieve, J.: Analyzing appraisal automatically. Technical report, Stanford University (March 2004)Google Scholar
  9. 9.
    Sidorov, G., Miranda-Jiménez, S., Viveros-Jiménez, F., Gelbukh, A., Castro-Sánchez, N., Velásquez, F., Díaz-Rangel, I., Suárez-Guerra, S., Treviño, A., Gordon, J.: Empirical study of machine learning based approach for opinion mining in tweets. In: Batyrshin, I., González Mendoza, M. (eds.) MICAI 2012, Part I. LNCS, vol. 7629, pp. 1–14. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Martínez-Cámara, E., Martín-Valdivia, M.T., Perea-Ortega, J.M., Ureña-López, L.A.: Opinion classification techniques applied to a spanish corpus. Procesamiento del Lenguaje Natural 47, 163–170 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • M. Dolores Molina-González
    • 1
  • Eugenio Martínez-Cámara
    • 1
  • M. Teresa Martín-Valdivia
    • 1
  • L. Alfonso Ureña-López
    • 1
  1. 1.Computer Science DepartmentUniversity of JaénJaénSpain

Personalised recommendations