A Branch-Price-and-Cut Algorithm for Packing Cuts in Undirected Graphs

  • Martin Bergner
  • Marco E. Lübbecke
  • Jonas T. Witt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8504)

Abstract

The cut packing problem in an undirected graph is to find a largest cardinality collection of pairwise edge-disjoint cuts. We provide the first experimental study of this NP-hard problem that interested theorists and practitioners alike. We propose a branch-price-and-cut algorithm to optimally solve instances from various graph classes, random and from the literature, with up to several hundred vertices. In particular we investigate how complexity results match computational experience and how combinatorial properties help improving the algorithm’s performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achterberg, T.: SCIP: solving constraint integer programs. Math. Programming Comp. 1(1), 1–41 (2009)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D. (eds.): Graph Partitioning and Graph Clustering. 10th DIMACS Implementation Challenge Workshop, February 13-14, 2012. Contemp. Mathematics, vol. 588. American Mathematical Society (2013)Google Scholar
  3. 3.
    Borndörfer, R., Kormos, Z.: An algorithm for maximum cliques. unpublished working paper, Konrad-Zuse-Zentrum für Informationstechnik Berlin (1997)Google Scholar
  4. 4.
    Caprara, A., Panconesi, A., Rizzi, R.: Packing cycles in undirected graphs. J. Algorithms 48, 239–256 (2003)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Caprara, A., Panconesi, A., Rizzi, R.: Packing cuts in undirected graphs. Networks 44(1), 1–11 (2004)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University Press, New York (1987)Google Scholar
  7. 7.
    Colbourn, C.: Edge-packing of graphs and network reliability. Discrete Math 72(1-3), 49–61 (1988)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the vehicle routing problem with time windows. Oper. Res. 40(2), 342–354 (1992)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Desrosiers, J., Lübbecke, M.: Branch-price-and-cut algorithms. In: Cochran, J. (ed.) Encyclopedia of Operations Research and Management Science. John Wiley & Sons, Chichester (2011)Google Scholar
  10. 10.
    Downey, R., Fellows, M.: Fixed-parameter tractability and completeness II: On completeness for W(1). Theoretical Computer Science 141(12), 109–131 (1995), http://www.sciencedirect.com/science/article/pii/0304397594000973 CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Fox-Epstein, E.: Forbidden Pairs Make Problems Hard. Bachelor’s thesis. Wesleyan University (2011)Google Scholar
  12. 12.
    Fulkerson, D.: Blocking and anti-blocking pairs of polyhedra. Math. Programming 1, 168–194 (1971)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data reduction, exact, and heuristic algorithms for clique cover. In: Proc. 8th ALENEX, pp. 86–94 (2006)Google Scholar
  14. 14.
    Gutfraind, A., Meyers, L.A., Safro, I.: Multiscale network generation, arXiv:1207.4266 (2012)Google Scholar
  15. 15.
    Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using NetworkX. In: Proc. of the 7th Python in Science Conference (SciPy 2008), Pasadena, pp. 11–15 (2008)Google Scholar
  16. 16.
    Halldórsson, M.M., Radhakrishnan, J.: Greed is good: Approximating independent sets in sparse and bounded-degree graphs. Algorithmica 18(1), 145–163 (1997)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Klimmek, R., Wagner, F.: A simple hypergraph min cut algorithm. Tech. Rep. B 96-02. FU Berlin (1996)Google Scholar
  18. 18.
    Kou, L.T., Stockmeyer, L.J., Wong, C.K.: Covering edges by cliques with regard to keyword conflicts and intersection graphs. Commun. ACM 21(2), 135–139 (1978)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Lucchesi, C., Younger, D.: A minimax theorem for directed graphs. J. Lond. Math. Soc. 17, 369–374 (1978)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Pettie, S., Ramachandran, V.: Randgraph graph generator (2006), http://www.dis.uniroma1.it/challenge9/download.shtml
  21. 21.
    Rinaldi, G.: Rudy, a graph generator (1998), http://www-user.tu-chemnitz.de/~helmberg/sdp_software.html
  22. 22.
    Robacker, J.T.: Min-max theorems on shortest chains and disjunct cuts of a network. Tech. Rep. RM-1660-PR. Rand Corporation (1956)Google Scholar
  23. 23.
    Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. Opt. Res. Q. 27(2), 367–384 (1976)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM 23(3), 555–565 (1976)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Trick, M.: Coloring instances (1993), http://mat.gsia.cmu.edu/COLOR/instances.html
  27. 27.
    Xu, K.: Bhoslib: Benchmarks with hidden optimum solutions for graph problems (2010), http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Martin Bergner
    • 1
  • Marco E. Lübbecke
    • 1
  • Jonas T. Witt
    • 1
  1. 1.Operations ResearchRWTH Aachen UniversityAachenGermany

Personalised recommendations