Hub Labels: Theory and Practice

  • Daniel Delling
  • Andrew V. Goldberg
  • Ruslan Savchenko
  • Renato F. Werneck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8504)

Abstract

The Hub Labeling algorithm (HL) is an exact shortest path algorithm with excellent query performance on some classes of problems. It precomputes some auxiliary information (stored as a label) for each vertex, and its query performance depends only on the label size. While there are polynomial-time approximation algorithms to find labels of approximately optimal size, practical solutions use hierarchical hub labels (HHL), which are faster to compute but offer no guarantee on the label size. We improve the theoretical and practical performance of the HL approximation algorithms, enabling us to compute such labels for moderately large problems. Our comparison shows that HHL algorithms scale much better and find labels that usually are not much bigger than the theoretically justified HL labels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-dimension and shortest path algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 690–699. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling algorithm for shortest paths on road networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub labelings for shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 24–35. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Akiba, T., Iwata, Y., Kawarabayashi, K.I., Kawata, Y.: Fast shortest path distance queries on road networks by pruned highway labeling. In: ALENEX 2014, pp. 147–154. SIAM, Philadelphia (2014)Google Scholar
  5. 5.
    Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance queries on large networks by pruned landmark labeling. In: SIGMOD 2013, pp. 349–360. ACM, New York (2013)Google Scholar
  6. 6.
    Babenko, M., Goldberg, A.V., Gupta, A., Nagarajan, V.: Algorithms for hub label optimization. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 69–80. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Bader, D., Meyerhenke, H., Sanders, P., Wagner, D. (eds.): Graph Partitioning and Graph Clustering. AMS, Boston (2013)MATHGoogle Scholar
  8. 8.
    Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Robust exact distance queries on massive networks. TR MSR-TR-2014-12, Microsoft Research (2014)Google Scholar
  10. 10.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18, 30–55 (1989)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Algorithms 53(1), 85–112 (2004)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A*: shortest path algorithms with preprocessing. In: The Shortest Path Problem: Ninth DIMACS Implementation Challenge, DIMACS Book, vol. 74, pp. 93–139. AMS, Boston (2009)Google Scholar
  14. 14.
    Goldberg, A.V., Razenshteyn, I., Savchenko, R.: Separating hierarchical and general hub labelings. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 469–479. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Kaplan, H.: Personal communication (2013)Google Scholar
  16. 16.
    Kleinberg, J.M.: The small-world phenomenon: An algorithmic perspective. In: STOC 2000, pp. 163–170. ACM, New York (2000)Google Scholar
  17. 17.
    Koch, T., Martin, A., Voß, S.: SteinLib: An updated library on Steiner tree problems in graphs. Tech. Rep. ZIB-Report 00-37, Konrad-Zuse-Zentrum für Informationstechnik, Heidelberg (2000), http://elib.zib.de/steinlib
  18. 18.
    Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Alg. 17, 222–236 (1994)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Peleg, D.: Proximity-preserving labeling schemes. J. Gr. Th. 33(3), 167–176 (2000)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Sander, P.V., Nehab, D., Chlamtac, E., Hoppe, H.: Efficient traversal of mesh edges using adjacency primitives. ACM Trans. Graphics 27(5), 144:1–144:9 (2008)Google Scholar
  21. 21.
    Schenkel, R., Theobald, A., Weikum, G.: HOPI: An efficient connection index for complex XML document collections. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 237–255. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniel Delling
    • 1
  • Andrew V. Goldberg
    • 1
  • Ruslan Savchenko
    • 2
  • Renato F. Werneck
    • 1
  1. 1.Microsoft ResearchMountain ViewUSA
  2. 2.Department of Mech. and Math.Moscow State UniversityMoscowRussia

Personalised recommendations