DenseZDD: A Compact and Fast Index for Families of Sets

  • Shuhei Denzumi
  • Jun Kawahara
  • Koji Tsuda
  • Hiroki Arimura
  • Shin-ichi Minato
  • Kunihiko Sadakane
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8504)

Abstract

In many real-life problems, we are often faced with manipulating families of sets. Manipulation of large-scale set families is one of the important fundamental techniques for web information retrieval, integration, and mining. For this purpose, a special type of binary decision diagrams (BDDs), called Zero-suppressed BDDs (ZDDs), is used. However, current techniques for storing ZDDs require a huge amount of memory and membership operations are slow. This paper introduces DenseZDD, a compressed index for static ZDDs. Our technique not only indexes set families compactly but also executes fast member membership operations. We also propose a hybrid method of DenseZDD and ordinary ZDDs to allow for dynamic indices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers C-35(8), 677–691 (1986)Google Scholar
  2. 2.
    Denzumi, S., Kawahara, J., Tsuda, K., Arimura, H., Minato, S., Sadakane, K.: A compact and fast index structure for families of sets. Tech. rep., TCS Technical Report Series A, TCS-TR-A-14-71, Division of Computer Science, Hokkaido University (2014), http://www-alg.ist.hokudai.ac.jp/tra.html
  3. 3.
    Denzumi, S., Yoshinaka, R., Arimura, H., Minato, S.: Notes on sequence binary decision diagrams: Relationship to acyclic automata and complexities of binary set operations. In: Prague Stringology Conference 2011, Prague, pp. 147–161 (2011)Google Scholar
  4. 4.
    Elias, P.: Universal codeword sets and representation of the integers. IEEE Transactions on Information Theory IT-21(2), 194–203 (1975)Google Scholar
  5. 5.
    Hansen, E.R., Rao, S.S., Tiedemann, P.: Compressing binary decision diagrams. In: 18th European Conference on Artificial Intelligence, pp. 799–800 (2008)Google Scholar
  6. 6.
    Knuth, D.E.: Combinatorial Algorithms, part 1, 1st edn. The Art of Computer Programming, vol. 4A. Addison-Wesley Professional, Boston (2011)Google Scholar
  7. 7.
    Maruyama, S., Nakahara, M., Kishiue, N., Sakamoto, H.: ESP-index: A compressed index based on edit-sensitive parsing. Journal of Discrete Algorithms (2013)Google Scholar
  8. 8.
    Mateu-Villarroya, P., Prades-Nebot, J.: Lossless image compression using ordered binary-decision diagrams. Electronics Letters 37, 162–163 (2001)CrossRefGoogle Scholar
  9. 9.
    Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: 30th International Design Automation Conference, pp. 272–277 (1993)Google Scholar
  10. 10.
    Minato, S.: SAPPORO BDD package. Division of Computer Science, Hokkaido University (2012) (to be released)Google Scholar
  11. 11.
    Minato, S.: Z-skip-links for fast traversal of zdds representing large-scale sparse datasets. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 731–742. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Minato, S., Ishiura, N., Yajima, S.: Shared binary decision diagram with attributed edges for efficient Boolean function manipulation. In: 27th International Design Automation Conference, pp. 52–57 (1990)Google Scholar
  13. 13.
    Minato, S., Uno, T., Arimura, H.: LCM over ZBDDs: Fast generation of very large-scale frequent itemsets using a compact graph-based representation. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 234–246. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary. In: Ninth Workshop on Algorithm Engineering and Experiments, pp. 60–70 (2007)Google Scholar
  15. 15.
    Starkey, M., Bryant, R.: Using ordered binary-decision diagrams for compressing images and image sequences. Tech. Rep. CMU-CS-95-105, Carnegie Mellon University (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shuhei Denzumi
    • 1
  • Jun Kawahara
    • 2
  • Koji Tsuda
    • 3
    • 4
  • Hiroki Arimura
    • 1
  • Shin-ichi Minato
    • 1
    • 4
  • Kunihiko Sadakane
    • 5
  1. 1.Graduate School of ISTHokkaido UniversityJapan
  2. 2.Nara Institute of Science and Technology (NAIST)Japan
  3. 3.National Institute of Advanced Industrial Science and Technology (AIST)Japan
  4. 4.ERATO MINATO Discrete Structure Manipulation System Project, JSTJapan
  5. 5.National Institute of Informatics (NII)Japan

Personalised recommendations