Inference of Boolean Networks from Gene Interaction Graphs Using a SAT Solver

  • David A. Rosenblueth
  • Stalin Muñoz
  • Miguel Carrillo
  • Eugenio Azpeitia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8542)


Boolean networks are important models of gene regulatory networks. Such models are sometimes built from: (1) a gene interaction graph and (2) a set of biological constraints. A gene interaction graph is a directed graph representing positive and negative gene regulations. Depending on the biological problem being solved, the set of biological constraints can vary, and may include, for example, a desired set of stationary states. We present a symbolic, SAT-based, method for inferring synchronous Boolean networks from interaction graphs augmented with constraints. Our method first constructs Boolean formulas in such a way that each truth assignment satisfying these formulas corresponds to a Boolean network modeling the given information. Next, we employ a SAT solver to obtain desired Boolean networks. Through a prototype, we show results illustrating the use of our method in the analysis of Boolean gene regulatory networks of the Arabidopsis thaliana root stem cell niche.


Boolean network Gene interaction graph SAT solver 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Pacific Symposium on Biocomputing, vol. 4, pp. 17–28 (1999)Google Scholar
  2. 2.
    Alvarez-Buylla, E.R., Benítez, M., Corvera-Poiré, A., Candor, A.C., de Folter, S., de Buen, A.G., Garay-Arroyo, A., García-Ponce, B., Jaimes-Miranda, F., Pérez-Ruiz, R.V., Pineiro-Nelson, A., Sánchez-Corrales, Y.E.: Flower development. The Arabidopsis Book p. 8:e0999 (2010), doi:10.1199/tab.0999Google Scholar
  3. 3.
    Azpeitia, E., Benítez, M., Vega, I., Villarreal, C., Alvarez-Buylla, E.R.: Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche. BMC Syst. Biol. 4(134) (2010)Google Scholar
  4. 4.
    Azpeitia, E., Weinstein, N., Benítez, M., Mendoza, L., Alvarez-Buylla, E.R.: Finding missing interactions of the Arabidopsis thaliana root stem cell niche gene regulatory network. Frontiers in Plant Science 4(10) (2013), doi:10.3389/fpls.2013.00110Google Scholar
  5. 5.
    Berestovsky, N., Nakhleh, L.: An evaluation of methods for inferring Boolean networks from time-series data. PloS One 8(6), e66031 (2013)Google Scholar
  6. 6.
    Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling and Computation 7, 59–64 (2010)Google Scholar
  7. 7.
    Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 3(2), e1672 (2008), doi:10.1371/journal.pone.0001672Google Scholar
  8. 8.
    Dubrova, E., Teslenko, M.: A SAT-based algorithm for computing attractors in synchrounous Boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(5), 1393–1399 (2011)CrossRefGoogle Scholar
  9. 9.
    Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a genetic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14), e124–e131 (2006)Google Scholar
  10. 10.
    Kauffman, S.: Homeostasis and differentiation in random genetic control networks. Nature 224(5215), 177–178 (1969)CrossRefGoogle Scholar
  11. 11.
    Klamt, S., Saez-Rodriguez, J., Lindquist, J.A., Simeoni, L., Gilles, E.D.: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 7(56) (2006), doi:10.1186/1471-2105-7-56Google Scholar
  12. 12.
    Lähdesmäki, H., Shmulevich, I., Yli-Harja, O.: On learning gene regulatory networks under the Boolean network model. Machine Learning 52(1-2), 147–167 (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. U.S.A. 101(14), 4781–4786 (2004)CrossRefGoogle Scholar
  14. 14.
    Liang, S., Fuhrman, S., Somogyi, R.: REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. In: Pacific Symposium on Biocomputing, vol. 3, pp. 18–29 (1998)Google Scholar
  15. 15.
    Mendoza, L., Xenarios, I.: A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theoretical Biology and Medical Modelling 3(13) (2006)Google Scholar
  16. 16.
    Nakajima, K., Sena, G., Nawy, T., Benfey, P.: Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413(6853), 307–3011 (2001)CrossRefGoogle Scholar
  17. 17.
    Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation and analysis of logical models of genetic networks. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 233–247. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Pal, R., Ivanov, I., Datta, A., Bittner, M.L., Dougherty, E.R.: Generating Boolean networks with a prescribed attractor structure. Bioinformatics 21(21), 4021–4025 (2005)CrossRefGoogle Scholar
  19. 19.
    Richard, A., Rossignol, G., Comet, J.P., Bernot, G., Guespin-Michel, J., Merieau, A.: Boolean models of biosurfactants production in Pseudomonas fluorescens. PLoS One 7(1), e24651 (2012),
  20. 20.
    Tamura, T., Akutsu, T.: Detecting a singleton attractor in a Boolean network utilizing SAT algorithms. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 92(2), 493–501 (2009)CrossRefGoogle Scholar
  21. 21.
    Welch, D., Hassan, H., Blilou, I., Immink, R., Heidstra, R., Scheres, B.: Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev. 21(17), 2196–2204 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • David A. Rosenblueth
    • 1
    • 3
  • Stalin Muñoz
    • 1
  • Miguel Carrillo
    • 1
  • Eugenio Azpeitia
    • 2
    • 3
  1. 1.Instituto de Investigaciones en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoMéxico, D.F.México
  2. 2.Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMéxico D.F.México
  3. 3.Centro de Ciencias de la Complejidad, piso 6, ala norte, Torre de IngenieríaUniversidad Nacional Autónoma de MéxicoMéxico D.F.México

Personalised recommendations