Analysis and Classification of Constrained DNA Elements with N-gram Graphs and Genomic Signatures

  • Dimitris Polychronopoulos
  • Anastasia Krithara
  • Christoforos Nikolaou
  • Giorgos Paliouras
  • Yannis Almirantis
  • George Giannakopoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8542)

Abstract

Most common methods for inquiring genomic sequence composition, are based on the bag-of-words approach and thus largely ignore the original sequence structure or the relative positioning of its constituent oligonucleotides. We here present a novel methodology that takes into account both word representation and relative positioning at various lengths scales in the form of n-gram graphs (NGG). We implemented the NGG approach on short vertebrate and invertebrate constrained genomic sequences of various origins and predicted functionalities and were able to efficiently distinguish DNA sequences belonging to the same species (intra-species classification). As an alternative method, we also applied the Genomic Signatures (GS) approach to the same sequences. To our knowledge, this is the first time that GS are applied on short sequences, rather than whole genomes. Together, the presented results suggest that NGG is an efficient method for classifying sequences, originating from a given genome, according to their function.

Keywords

genomic sequence representation n-gram graphs conserved non-coding elements CNEs UCEs ultraconserved elements classification genomic signatures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W.J., Mattick, J.S., Haussler, D.: Ultraconserved elements in the human genome. Science 304(5675), 1321–1325 (2004), http://www.ncbi.nlm.nih.gov/pubmed/15131266 CrossRefGoogle Scholar
  2. 2.
    Cohen, W.W.: Fast effective rule induction. ICML 95, 115–123 (1995)Google Scholar
  3. 3.
    Culotta, A., Kulp, D., McCallum, A.: Gene prediction with conditional random fields, Tech. Rep. UM-CS-2005-028, University of Massachusetts, Amherst (2005)Google Scholar
  4. 4.
    Dimitrieva, S., Bucher, P.: Genomic context analysis reveals dense interaction network between vertebrate ultraconserved non-coding elements. Bioinformatics 28(18), i395–i401 (2012), http://www.ncbi.nlm.nih.gov/pubmed/22962458
  5. 5.
    Drake, J.A., Bird, C., Nemesh, J., Thomas, D.J., Newton-Cheh, C., Reymond, A., Excoffier, L., Attar, H., Antonarakis, S.E., Dermitzakis, E.T., Hirschhorn, J.N.: Conserved noncoding sequences are selectively constrained and not mutation cold spots. Nat. Genet. 38(2), 223–227 (2006), http://www.ncbi.nlm.nih.gov/pubmed/16380714 CrossRefGoogle Scholar
  6. 6.
    Ganapathiraju, M., Weisser, D., Rosenfeld, R., Carbonell, J., Reddy, R., Klein-Seetharaman, J.: Comparative n-gram analysis of whole-genome protein sequences. In: Proceedings of the Second International Conference on Human Language Technology Research, pp. 76–81. Morgan Kaufmann Publishers Inc. (2002)Google Scholar
  7. 7.
    Giannakopoulos, G., Karkaletsis, V., Vouros, G., Stamatopoulos, P.: Summarization system evaluation revisited: N-gram graphs. ACM Trans. Speech Lang. Process. 5(3), 139 (2008)CrossRefGoogle Scholar
  8. 8.
    Glazko, G.V., Koonin, E.V., Rogozin, I.B., Shabalina, S.A.: A significant fraction of conserved noncoding DNA in human and mouse consists of predicted matrix attachment regions. Trends Genet. 19(3), 119–124 (2003), http://www.ncbi.nlm.nih.gov/pubmed/12615002 CrossRefGoogle Scholar
  9. 9.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)CrossRefGoogle Scholar
  10. 10.
    Harmston, N., Baresic, A., Lenhard, B.: The mystery of extreme non-coding conservation. Philosophical transactions of the Royal Society of London 368(1632), 20130021 (2013), http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3826495&tool=pmcentrez&rendertype=abstract CrossRefGoogle Scholar
  11. 11.
    Karlin, S., Mrázek, J.: Compositional differences within and between eukaryotic genomes. Proceedings of the National Academy of Sciences of the United States of America 94(19), 10227–10232 (1997), http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=23344&tool=pmcentrez&rendertype=abstract CrossRefGoogle Scholar
  12. 12.
    Karlin, S.: Global dinucleotide signatures and analysis of genomic heterogeneity. Current Opinion in Microbiology 1(5), 598–610 (1998)CrossRefGoogle Scholar
  13. 13.
    Karlin, S., Burge, C.: Dinucleotide relative abundance extremes: a genomic signature. Trends in Genetics 11(7), 283–290 (1995)CrossRefGoogle Scholar
  14. 14.
    Karolchik, D., Baertsch, R., Diekhans, M., Furey, T.S., Hinrichs, A., Lu, Y., Roskin, K.M., Schwartz, M., Sugnet, C.W., Thomas, D.J., et al.: The ucsc genome browser database. Nucleic Acids Research 31(1), 51–54 (2003)CrossRefGoogle Scholar
  15. 15.
    Kim, J.Y., Shawe-Taylor, J.: Fast string matching using an n-gram algorithm. Software: Practice and Experience 24(1), 79–88 (1994)Google Scholar
  16. 16.
    Kim, M.S., Whang, K.Y., Lee, J.G., Lee, M.J.: n-gram/2l: A space and time efficient two-level n-gram inverted index structure. In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 325–336. VLDB Endowment (2005)Google Scholar
  17. 17.
    Kim, S.Y., Pritchard, J.K.: Adaptive evolution of conserved noncoding elements in mammals. PLoS Genetics 3(9), 1572–1586 (2007), http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1971121&tool=pmcentrez&rendertype=abstract CrossRefGoogle Scholar
  18. 18.
    Lee, A.P., Kerk, S.Y., Tan, Y.Y., Brenner, S., Venkatesh, B.: Ancient vertebrate conserved noncoding elements have been evolving rapidly in teleost fishes. Mol. Biol. Evol. 28(3), 1205–1215 (2011), http://www.ncbi.nlm.nih.gov/pubmed/21081479 CrossRefGoogle Scholar
  19. 19.
    Lindblad-Toh, K., et al.: A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478(7370), 476–482 (2011), http://www.ncbi.nlm.nih.gov/pubmed/21993624 CrossRefGoogle Scholar
  20. 20.
    Mantegna, R., Buldyrev, S., Goldberger, A., Havlin, S., Peng, C.K., Simons, M., Stanley, H.: Systematic analysis of coding and noncoding dna sequences using methods of statistical linguistics. Physical Review E 52(3), 2939 (1995)CrossRefGoogle Scholar
  21. 21.
    Pruitt, K.D., Tatusova, T., Maglott, D.R.: Ncbi reference sequences (refseq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research 35(suppl. 1), 61–65 (2007)CrossRefGoogle Scholar
  22. 22.
    Quinlan, A.R., Hall, I.M.: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6), 841–842 (2010), http://www.ncbi.nlm.nih.gov/pubmed/20110278 CrossRefGoogle Scholar
  23. 23.
    Retelska, D., Beaudoing, E., Notredame, C., Jongeneel, C.V., Bucher, P.: Vertebrate conserved non coding DNA regions have a high persistence length and a short persistence time. BMC Genomics 8, 398 (2007), http://www.ncbi.nlm.nih.gov/pubmed/17973996 CrossRefGoogle Scholar
  24. 24.
    Rice, P., Longden, I., Bleasby, A.: EMBOSS: the European Molecular Biology Open Software Suite. Trends in genetics: TIG 16(6), 276–277 (2000), http://www.ncbi.nlm.nih.gov/pubmed/10827456 CrossRefGoogle Scholar
  25. 25.
    Stephen, S., Pheasant, M., Makunin, I.V., Mattick, J.S.: Large-scale appearance of ultraconserved elements in tetrapod genomes and slowdown of the molecular clock. Mol. Biol. Evol. 25(2), 402–408 (2008), http://www.ncbi.nlm.nih.gov/pubmed/18056681 CrossRefGoogle Scholar
  26. 26.
    Touchon, M., Arneodo, A., d’Aubenton Carafa, Y., Thermes, C.: Transcription-coupled and splicing-coupled strand asymmetries in eukaryotic genomes. Nucleic Acids Research 32(17), 4969–4978 (2004)CrossRefGoogle Scholar
  27. 27.
    Vavouri, T., Walter, K., Gilks, W.R., Lehner, B., Elgar, G.: Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans. Genome Biol. 8(2), R15 (2007), http://www.ncbi.nlm.nih.gov/pubmed/17274809
  28. 28.
    Viturawong, T., Meissner, F., Butter, F., Mann, M.: A DNA-Centric Protein Interaction Map of Ultraconserved Elements Reveals Contribution of Transcription Factor Binding Hubs to Conservation. Cell reports 5(2), 531–545 (2013), http://www.cell.com/cell-reports/fulltext/S2211-1247 CrossRefGoogle Scholar
  29. 29.
    Walter, K., Abnizova, I., Elgar, G., Gilks, W.R.: Striking nucleotide frequency pattern at the borders of highly conserved vertebrate non-coding sequences. Trends Genet. 21(8), 436–440 (2005), http://www.ncbi.nlm.nih.gov/pubmed/15979195 CrossRefGoogle Scholar
  30. 30.
    Xie, X., Mikkelsen, T.S., Gnirke, A., Lindblad-Toh, K., Kellis, M., Lander, E.S.: Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites. Proc. Natl. Acad. Sci U. S. A. 104(17), 7145–7150 (2007), http://www.ncbi.nlm.nih.gov/pubmed/17442748 CrossRefGoogle Scholar
  31. 31.
    Zhang, L., Kasif, S., Cantor, C.R., Broude, N.E.: Gc/at-content spikes as genomic punctuation marks. Proceedings of the National Academy of Sciences of the United States of America 101(48), 16855–16860 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dimitris Polychronopoulos
    • 1
    • 4
  • Anastasia Krithara
    • 2
  • Christoforos Nikolaou
    • 3
  • Giorgos Paliouras
    • 2
  • Yannis Almirantis
    • 1
  • George Giannakopoulos
    • 2
  1. 1.Institute of Biosciences and ApplicationsNCSR DemokritosAthensGreece
  2. 2.Institute of Informatics and TelecommunicationsNCSR DemokritosAthensGreece
  3. 3.Department of BiologyUniversity of CreteHeraklionGreece
  4. 4.Department of Biochemistry and Molecular Biology, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations