Advertisement

Fc Receptors pp 201-219 | Cite as

Antibodies as Natural Adjuvants

  • Birgitta Heyman
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 382)

Abstract

Antibodies in complex with specific antigen can dramatically change the antibody response to this antigen. Depending on antibody class and type of antigen, >99 % suppression or >100-fold enhancement of the response can take place. IgM and IgG3 are efficient enhancers and operate via the complement system. In contrast, IgG1, IgG2a, and IgG2b enhance antibody and CD4+ T cell responses to protein antigens via activating Fcγ-receptors. IgE also enhances antibody and CD4+ T cell responses to small proteins but uses the low-affinity receptor for IgE, CD23. Most likely, IgM and IgG3 work by increasing the effective concentration of antigen on follicular dendritic cells in splenic follicles. IgG1, IgG2a, IgG2b, and IgE probably enhance antibody responses by increasing antigen presentation by dendritic cells to T helper cells. IgG antibodies of all subclasses have a dual effect, and suppress antibody responses to particulate antigens such as erythrocytes. This capacity is used in the clinic to prevent immunization of Rhesus-negative women to Rhesus-positive fetal erythrocytes acquired via transplacental hemorrage. IgG-mediated suppression in mouse models can take place in the absence of Fcγ-receptors and complement and to date no knock-out mouse strain has been found where suppression is abrogated.

Keywords

Antibody Response Complement Activation Germinal Center Primary Antibody Response Fetal Erythrocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I wish to thank all past and present members of my laboratory, who have shared my interest in revealing how antibodies feedback-regulate the production of themselves. The work has been supported by Uppsala University, the Swedish Research Council, Ellen, Walter and Lennart Hesselman’s Foundation, Hans von Kantzow’s Foundation, King Gustaf V:s 80 Years Foundation, Ollie and Elof Ericsson’s Foundation, and Agnes and Mac Rudberg’s Foundation.

References

  1. Alexeyev OA, Ahlm C, Billheden J, Settergren B, Wadell G, Juto P (1994) Elevated levels of total and Puumala virus-specific immunoglobulin E in the Scandinavian type of hemorrhagic fever with renal syndrome. Clin Diagn Lab Immunol 1(3):269–272PubMedPubMedCentralGoogle Scholar
  2. Applequist SE, Dahlström J, Jiang N, Molina H, Heyman B (2000) Antibody production in mice deficient for complement receptors 1 and 2 can be induced by IgG/Ag and IgE/Ag, but not IgM/Ag complexes. J Immunol 165:2398–2403PubMedCrossRefGoogle Scholar
  3. Arnon TI, Horton RM, Grigorova IL, Cyster JG (2013) Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature 493(7434):684–688PubMedCrossRefPubMedCentralGoogle Scholar
  4. Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J (2000) B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med 192(2):271–280PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bennich HH, Ishizaka K, Johansson SG, Rowe DS, Stanworth DR, Terry WD (1968) Immunoglobulin E: a new class of human immunoglobulin. Immunology 15(3):323–324Google Scholar
  6. Bettler B, Hofstetter H, Rao M, Yokoyama WM, Kilchherr F, Conrad DH (1989) Molecular structure and expression of the murine lympocyte low affinity receptor for IgE (FcεRII). Proc Natl Acad Sci USA 86:7566–7570PubMedCrossRefPubMedCentralGoogle Scholar
  7. Brinc D, Lazarus AH (2009) Mechanisms of anti-D action in the prevention of hemolytic disease of the fetus and newborn. Hematol Am Soc Hematol Educ Program 185–191Google Scholar
  8. Brinc D, Le-Tien H, Crow AR, Siragam V, Freedman J, Lazarus AH (2008) Transfusion of IgG-opsonized foreign red blood cells mediates reduction of antigen-specific B cell priming in a murine model. J Immunol 181(2):948–953PubMedCrossRefGoogle Scholar
  9. Brüggemann M, Rajewsky K (1982) Regulation of the antibody response against hapten-coupled erythrocytes by monoclonal anti-hapten antibodies of various isotypes. Cell Immunol 71:365–373PubMedCrossRefGoogle Scholar
  10. Carlsson F, Hjelm F, Conrad DH, Heyman B (2007) IgE enhances specific antibody and T cell responses in mice overexpressing CD23. Scand J Immunol 66:261–270PubMedCrossRefGoogle Scholar
  11. Carlsson F, Getahun A, Rutemark C, Heyman B (2009) Impaired antibody responses but normal proliferation of specific CD4+ T cells in mice lacking complement receptors 1 and 2. Scand J Immunol 70(2):77–84PubMedCrossRefGoogle Scholar
  12. Cerottini JC, McConahey PJ, Dixon FJ (1969) The immunosuppressive effect of passively administered antibody IgG fragments. J Immunol 102:1008–1015PubMedGoogle Scholar
  13. Chan PL, Sinclair NRSTC (1973) Regulation of the immune response. VI. Inability of F(ab′)2 antibody to terminate established immune responses and its ability to interfere with IgG antibody-mediated immunosuppression. Immunology 24:289–310Google Scholar
  14. Cinamon G, Zachariah MA, Lam OM, Foss FW Jr, Cyster JG (2008) Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol 9(1):54–62PubMedCrossRefPubMedCentralGoogle Scholar
  15. Clarke CA, Donohoe WTA, Woodrow JC, Finn R, Krevans JR, Kulke W et al (1963) Further experimental studies on the prevention of Rh haemolytic disease. Br Med J 1:979–984PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cooper LJ, Schimenti JC, Glass DD, Greenspan NS (1991) H chain C domains influence the strength of binding of IgG for streptococcal group A carbohydrate. J Immunol 146(8):2659–2663PubMedGoogle Scholar
  17. Coulie P, Van Snick J (1985) Enhancement of IgG anti-carrier responses by IgG2-anti-hapten antibodies in mice. Eur J Immunol 15:793–798PubMedCrossRefGoogle Scholar
  18. Daëron M, Lesourne R (2006) Negative signaling in Fc receptor complexes. Adv Immunol 89:39–86PubMedCrossRefGoogle Scholar
  19. de Jong JM, Schuurhuis DH, Ioan-Facsinay A, Welling MM, Camps MG, van der Voort EI et al (2006) Dendritic cells, but not macrophages or B cells, activate major histocompatibility complex class II-restricted CD4 + T cells upon immune-complex uptake in vivo. Immunology 119(4):499–506PubMedCrossRefPubMedCentralGoogle Scholar
  20. de Ståhl Diaz (2001) T, Heyman B. IgG2a-mediated enhancement of antibody responses is dependent on FcRgamma + bone marrow-derived cells. Scand J Immunol 54(5):495–500CrossRefGoogle Scholar
  21. Dennert G (1971) The mechanism of antibody-induced stimulation and inhibition of the immune response. J Immunol 106:951–955PubMedGoogle Scholar
  22. Diaz de Ståhl T, Dahlström J, Carroll MC, Heyman B (2003) A role for complement in feedback-enhancement of antibody responses by IgG3. J Exp Med 197:1183–1190PubMedCrossRefGoogle Scholar
  23. Ding Z, Bergman A, Rutemark C, Ouchida R, Ohno H, Wang JY et al (2013) Complement-activating IgM enhances the humoral but not the T cell immune response in mice. PLoS ONE 8(11):e81299PubMedCrossRefPubMedCentralGoogle Scholar
  24. Donius LR, Handy JM, Weis JJ, Weis JH (2013) Optimal germinal center B cell activation and T-dependent antibody responses require expression of the mouse complement receptor Cr1. J Immunol 191(1):434–447PubMedCrossRefPubMedCentralGoogle Scholar
  25. Ehrenstein MR, O’Keefe TL, Davies SL, Neuberger MS (1998) Targeted gene disruption reveals a role for natural secretory IgM in the maturation of the primary immune response. Proc Natl Acad Sci USA 95(17):10089–10093PubMedCrossRefPubMedCentralGoogle Scholar
  26. Enriquez-Rincon F, Klaus GGB (1984) Differing effects of monoclonal anti-hapten antibodies on humoral responses to soluble or particulate antigens. Immunology 52:129–136PubMedPubMedCentralGoogle Scholar
  27. Ferguson AR, Youd ME, Corley RB (2004) Marginal zone B cells transport and deposit IgM-containing immune complexes onto follicular dendritic cells. Int Immunol 16(10):1411–1422PubMedCrossRefGoogle Scholar
  28. Fujiwara H, Kikutani H, Suematsu S, Naka T, Yoshida K, Yoshida K et al (1994) The absence of IgE antibody-mediated augmentation of immune responses in CD23-deficient mice. Proc Natl Acad Sci USA 91:6835–6839PubMedCrossRefPubMedCentralGoogle Scholar
  29. Gavin AL, Barnes N, Dijstelbloem HM, Hogarth PM (1998) Identification of the mouse IgG3 receptor: Implications for antibody effector function at the interface between innate and adaptive immunity. J Immunol 160:20–23PubMedGoogle Scholar
  30. Getahun A, Heyman B (2009) Studies on the mechanism by which antigen-specific IgG suppresses primary antibody responses: evidence for epitope masking and decreased localization of antigen in the spleen. Scand J Immunol 70(3):277–287PubMedCrossRefGoogle Scholar
  31. Getahun A, Dahlström J, Wernersson S, Heyman B (2004) IgG2a-mediated enhancement of Ab- and T-cell responses and its relation to inhibitory and activating FcγRs. J Immunol 172:5269–5276PubMedCrossRefGoogle Scholar
  32. Getahun A, Hjelm F, Heyman B (2005) IgE enhances antibody and T cell responses in vivo via CD23+ B Cells. J Immunol 175(3):1473–1482PubMedCrossRefGoogle Scholar
  33. Greenspan NS, Cooper LJN (1992) Intermolecular cooperativity: a clue to why mice have IgG3? Immunol Today 13:164–168PubMedCrossRefGoogle Scholar
  34. Gustavsson S, Hjulström S, Liu T, Heyman B (1994) CD23/IgE-mediated regulation of the specific antibody response in vivo. J Immunol 152:4793–4800PubMedGoogle Scholar
  35. Gustavsson S, Hjulström-Chomez S, Lidström B-M, Ahlborg N, Andersson R, Heyman B (1998) Impaired antibody responses in H-2Ab mice. J Immunol 161:1765–1771PubMedGoogle Scholar
  36. Gustavsson S, Wernersson S, Heyman B (2000) Restoration of the antibody response to IgE/antigen complexes in CD23-deficient mice by CD23+ spleen or bone marrow cells. J Immunol 164:3990–3995PubMedCrossRefGoogle Scholar
  37. Hamano Y, Arase H, Saisho H, Saito T (2000) Immune complex and Fc receptor-mediated augmentation of antigen presentation for in vivo Th cell responses. J Immunol 164(12):6113–6119PubMedCrossRefGoogle Scholar
  38. Harte PG, Cooke A, Playfair JHL (1983) Specific monoclonal IgM is a potent adjuvant in murine malaria vaccination. Nature 302:256–258PubMedCrossRefGoogle Scholar
  39. Heesters BA, Chatterjee P, Kim YA, Gonzalez SF, Kuligowski MP, Kirchhausen T, et al (2013) Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 38:1164–1175Google Scholar
  40. Henningsson F, Ding Z, Dahlin JS, Linkevicius M, Carlsson F, Grönvik KO et al (2011) IgE-mediated enhancement of CD4+ T cell responses in mice requires antigen presentation by CD11c+ cells and not by B cells. PLoS ONE 6(7):e21760PubMedCrossRefPubMedCentralGoogle Scholar
  41. Henry C, Jerne N (1968) Competition of 19S and 7S antigen receptors in the regulation of the primary immune response. J Exp Med 128:133–152PubMedCrossRefPubMedCentralGoogle Scholar
  42. Heyman B (2000) Regulation of antibody responses via antibodies, complement, and Fc receptors. Annu Rev Immunol 18:709–737PubMedCrossRefGoogle Scholar
  43. Heyman B (2003) Feedback regulation by IgG antibodies. Immunol Lett 88:157–161PubMedCrossRefGoogle Scholar
  44. Heyman B (2013) Antibody mediated regulation of humoral immunity. In: Nimmerjahn F (ed) Molecular and cellular mechanisms of antibody activity. Springer, New York, pp 221–249CrossRefGoogle Scholar
  45. Heyman B, Wigzell H (1984) Immunoregulation by monoclonal sheep erythrocyte specific IgG antibodies. Suppression is correlated to level of antigen binding and not to isotype. J Immunol 132:1136–1143PubMedGoogle Scholar
  46. Heyman B, Wigzell H (1985) IgM enhances and IgG suppresses immunological memory in mice. Scand J Immunol 21:255–266PubMedCrossRefGoogle Scholar
  47. Heyman B, Andrighetto S, Wigzell H (1982) Antigen dependent IgM-mediated enhancement of the sheep erythrocyte response in mice. Evidence for induction of B cells with specificities other than that of the injected antibodies. J Exp Med 155:994–1009PubMedCrossRefPubMedCentralGoogle Scholar
  48. Heyman B, Pilström L, Shulman MJ (1988a) Complement activation is required for IgM-mediated enhancement of the antibody response. J Exp Med 167:1999–2004PubMedCrossRefGoogle Scholar
  49. Heyman B, Wiersma E, Nose M (1988b) Complement activation is not required for IgG-mediated suppression of the antibody response. Eur J Immunol 18:1739–1743PubMedCrossRefGoogle Scholar
  50. Heyman B, Liu T, Gustavsson S (1993) In vivo enhancement of the specific antibody response via the low affinity receptor for IgE. Eur J Immunol 23:1739–1742PubMedCrossRefGoogle Scholar
  51. Hjelm F, Carlsson F, Verbeek S, Heyman B (2005) IgG3-mediated enhancement of the antibody response is normal in Fc gammaRI-deficient mice. Scand J Immunol 62(5):453–461PubMedCrossRefGoogle Scholar
  52. Hjelm F, Carlsson F, Getahun A, Heyman B (2006) Antibody-mediated regulation of the immune response. Scand J Immunol 64(3):177–184PubMedCrossRefGoogle Scholar
  53. Hjelm F, Karlsson MCI, Heyman B (2008) A novel B-cell mediated transport of IgE-immune complexes to the follicle of the spleen. J Immunol 180:6604–6610PubMedCrossRefGoogle Scholar
  54. Hjulström S, Landin A, Jansson L, Holmdahl R, Heyman B (1995) No role of interleukin-4 in CD23/IgE-mediated enhancement of the murine antibody response in vivo. Eur J Immunol 25:1469–1472PubMedCrossRefGoogle Scholar
  55. Honjo K, Kubagawa Y, Jones DM, Dizon B, Zhu Z, Ohno H et al (2012) Altered Ig levels and antibody responses in mice deficient for the Fc receptor for IgM (FcmuR). Proc Natl Acad Sci USA 109(39):15882–15887PubMedCrossRefPubMedCentralGoogle Scholar
  56. Ishizaka K, Ishizaka T, Hornbrook MM (1966a) Physicochemical properties of reaginic antibody. V. Correlation of reaginic activity with gamma-E-globulin antibody. J Immunol 97(6):840–853PubMedGoogle Scholar
  57. Ishizaka K, Ishizaka T, Hornbrook MM (1966b) Physico-chemical properties of human reaginic antibody. IV. Presence of a unique immunoglobulin as a carrier of reaginic activity. J Immunol 97(1):75–85PubMedGoogle Scholar
  58. Johansson SG, Bennich H (1967) Immunological studies of an atypical (myeloma) immunoglobulin. Immunology 13(4):381–394PubMedPubMedCentralGoogle Scholar
  59. Karlsson MCI, Wernersson S, Diaz de Ståhl T, Gustavsson S, Heyman B (1999) Efficient IgG-mediated suppression of primary antibody responses in Fc-gamma receptor-deficient mice. Proc Natl Acad Sci USA 96:2244–2249Google Scholar
  60. Karlsson MCI, Getahun A, Heyman B (2001) FcγRIIB in IgG-mediated suppression of antibody responses: different impact in vivo and in vitro. J Immunol 167:5558–5564PubMedCrossRefGoogle Scholar
  61. Kehry MR, Yamashita LC (1989) Low-affinity IgE receptor (CD23) function on mouse B cells: role in IgE-dependent antigen focusing. Proc Natl Acad Sci USA 86:7556–7560PubMedCrossRefPubMedCentralGoogle Scholar
  62. Klaus GGB (1979) Generation of memory cells. III. Antibody class requirements for the generation of B-memory cells by antigen-antibody complexes. Immunology 37:345–351Google Scholar
  63. Kondo H, Ichikawa Y, Nakamura K, Tsuchiya S (1994) Cloning of cDNAs for new subtypes of murine low-affinity Fc receptor for IgE (FcεRII/CD23). Int Arch Allergy Immunol 105:38–48PubMedCrossRefGoogle Scholar
  64. Kubagawa H, Oka S, Kubagawa Y, Torii I, Takayama E, Kang DW et al (2009) Identity of the elusive IgM Fc receptor (FcmuR) in humans. J Exp Med 206(12):2779–2793PubMedCrossRefPubMedCentralGoogle Scholar
  65. Lawrence DA, Weigle WO, Spiegelberg HL (1975) Immunoglobulins cytophilic for human lymphocytes, monocytes, and neutrophils. J Clin Invest 55:268–275CrossRefGoogle Scholar
  66. Link A, Zabel F, Schnetzler Y, Titz A, Brombacher F, Bachmann MF (2012) Innate immunity mediates follicular transport of particulate but not soluble protein antigen. J Immunol 188(8):3724–3733PubMedCrossRefGoogle Scholar
  67. Maeda K, Burton GF, Padgett DA, Conrad DH, Huff TF, Masuda A et al (1992) Murine follicular dendritic cells and low affinity Fc receptors for IgE (FcεRII). J Immunol 148:2340–2347PubMedGoogle Scholar
  68. Mancardi DA, Iannascoli B, Hoos S, England P, Daeron M, Bruhns P (2008) FcgammaRIV is a mouse IgE receptor that resembles macrophage FcepsilonRI in humans and promotes IgE-induced lung inflammation. J Clin Invest 118(11):3738–3750PubMedCrossRefPubMedCentralGoogle Scholar
  69. Marichal T, Starkl P, Reber LL, Kalesnikoff J, Oettgen HC, Tsai M et al (2013) A beneficial role for immunoglobulin E in host defense against honeybee venom. Immunity 39:963–975Google Scholar
  70. McGreal EP, Miller JL, Gordon S (2005) Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr Opin Immunol 17:18–24PubMedCrossRefGoogle Scholar
  71. Metzger H (1991) The high affinity receptor for IgE on mast cells. Clin Exp Allergy 21:269–279PubMedCrossRefGoogle Scholar
  72. Na D, Kim D, Lee D (2006) Mathematical modeling of humoral immune response suppression by passively administered antibodies in mice. J Theor Biol 241(4):830–851PubMedCrossRefGoogle Scholar
  73. Nie X, Basu S, Cerny J (1997) Immunization with immune complex alters the repertoire of antigen-reactive B cells in the germinal centers. Eur J Immunol 27(12):3517–3525PubMedCrossRefGoogle Scholar
  74. Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin G subclass activity through selective Fc receptor binding. Science 310(5753):1510–1512PubMedCrossRefGoogle Scholar
  75. Ouchida R, Mori H, Hase K, Takatsu H, Kurosaki T, Tokuhisa T et al (2012) Critical role of the IgM Fc receptor in IgM homeostasis, B-cell survival, and humoral immune responses. Proc Natl Acad Sci USA 109(40):E2699–E2706PubMedCrossRefPubMedCentralGoogle Scholar
  76. Palm NW, Rosenstein RK, Yu S, Schenten DD, Florsheim E, Medzhitov R (2013) Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity. Immunity 39:976–985Google Scholar
  77. Perlmutter RM, Hansburg D, Briles DE, Nicolotti RA, Davie JM (1978) Subclass restriction of murine anti-carbohydrate antibodies. J Immunol 121:566–572PubMedGoogle Scholar
  78. Pirron U, Schlunck T, Prinz JC, Rieber EP (1990) IgE-dependent antigen focusing by human B lymphocytes is mediated by low-affinity receptor for IgE. Eur J Immunol 20:1547–1551PubMedCrossRefGoogle Scholar
  79. Qin D, Wu J, Vora KA, Ravetch JV, Szakal AK, Manser T et al (2000) Fc gamma receptor IIB on follicular dendritic cells regulates the B cell recall response. J Immunol 164(12):6268–6275PubMedCrossRefGoogle Scholar
  80. Rao M, Lee WT, Conrad DH (1987) Characterization of a monoclonal antibody directed against the murine B lymphocyte receptor for IgE. J Immunol 138:1845–1851PubMedGoogle Scholar
  81. Rubinstein LJ, Stein KE (1988) Murine immune response to the N. meningitidis group C capsular polysaccharide: ontogeny. J Immunol 141:4352–4356PubMedGoogle Scholar
  82. Rutemark C, Alicot E, Bergman A, Ma M, Getahun A, Ellmerich S et al (2011) Requirement for complement in antibody responses is not explained by the classic pathway activator IgM. Proc Natl Acad Sci USA 108(43):E934–E942PubMedCrossRefPubMedCentralGoogle Scholar
  83. Rutemark C, Bergman A, Getahun A, Hallgren J, Henningsson F, Heyman B (2012) Complement receptors 1 and 2 in murine antibody responses to IgM-complexed and uncomplexed sheep erythrocytes. PLoS ONE 7(7):e41968PubMedCrossRefPubMedCentralGoogle Scholar
  84. Shima H, Takatsu H, Fukuda S, Ohmae M, Hase K, Kubagawa H et al (2010) Identification of TOSO/FAIM3 as an Fc receptor for IgM. Int Immunol 22(3):149–156PubMedCrossRefGoogle Scholar
  85. Sinclair NRSC (1969) Regulation of the immune response. I. Reduction in ability of specific antibody to inhibit longlasting IgG immunological priming after removal of the Fc fragment. J Exp Med 129:1183–1201PubMedCrossRefPubMedCentralGoogle Scholar
  86. Takizawa F, Adamczewski M, Kinet J-P (1992) Identification of the low affinity receptor for immunoglobulin E on mouse mast cells and macrophages as FcγRII and FcγRIII. J Exp Med 176:469–476PubMedCrossRefGoogle Scholar
  87. Tao TW, Uhr JW (1966) Capacity of pepsin-digested antibody to inhibit antibody formation. Nature 212:208–209PubMedCrossRefGoogle Scholar
  88. Terres G, Habicht GS, Stoner RD (1974) Carrier-specific enhancement of the immune response using antigen-antibody complexes. J Immunol 112:804–811PubMedGoogle Scholar
  89. Uhr JW, Möller G (1968) Regulatory effect of antibody on the immune response. Adv Immunol 8:81–127PubMedCrossRefGoogle Scholar
  90. Urbaniak SJ, Greiss MA (2000) RhD haemolytic disease of the fetus and the newborn. Blood Rev 14(1):44–61PubMedCrossRefGoogle Scholar
  91. von Behring E, Wernicke E (1892) Über Immunisierung und Heilung von Versuchstieren bei der Diphterie. Z Hyg Infektionskrankheit 12:10–44Google Scholar
  92. Welliver RC (2003) Respiratory syncytial virus and other respiratory viruses. Pediatr Infect Dis J 22(2 Suppl):S6–S10; discussion S-2Google Scholar
  93. Wernersson S, Karlsson M, Dahlström J, Mattsson R, Verbeek JS, Heyman B (1999) IgG-mediated enhancement of Ab responses is low in FcRγ chain deficient mice and increased in FcγRII deficient mice. J Immunol 163:618–622PubMedGoogle Scholar
  94. Westman S, Gustavsson S, Heyman B (1997) Early expansion of secondary B cells after primary immunization with antigen complexed with IgE. Scand J Immunol 46:10–15PubMedCrossRefGoogle Scholar
  95. Whited Collisson E, Andersson B, Lamon EW (1984) Avidities of hapten-specific antibodies when the responses are modulated by anti-carrier antibodies. Immunology 53:443–449Google Scholar
  96. Wiersma EJ, Coulie PG, Heyman B (1989) Dual immunoregulatory effects of monoclonal IgG-antibodies: suppression and enhancement of the antibody response. Scand J Immunol 29:439–448PubMedCrossRefGoogle Scholar
  97. Wiersma EJ, Nose M, Heyman B (1990) Evidence of IgG-mediated enhancement of the antibody response in mice without classical pathway complement activation. Eur J Immunol 20:2585–2589PubMedCrossRefGoogle Scholar
  98. Youd ME, Ferguson AR, Corley RB (2002) Synergistic roles of IgM and complement in antigen trapping and follicular localization. Eur J Immunol 32:2328–2337PubMedCrossRefGoogle Scholar
  99. Yu LCH, Montagnac G, Yang P-C, Conrad DH, Benmerah A, Perdue MH (2003) Intestinal epithelial CD23 mediates enhanced antigen transport in allergy: evidence for a novel splice form. Am J Physiol Gastrointes Liver Physiol 285:G223–G234Google Scholar
  100. Zhang Y, Meyer-Hermann M, George LA, Figge MT, Khan M, Goodall M et al (2013) Germinal center B cells govern their own fate via antibody feedback. J Exp Med 210(3):457–464PubMedCrossRefPubMedCentralGoogle Scholar
  101. Zhang L, Ding Z, Xu H, Heyman B Marginal zone B cells transport IgG3-immune complexes to splenic follicles. J Immunol (in press)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden

Personalised recommendations