Computational Modeling of the Main Signaling Pathways Involved in Mast Cell Activation

  • Anna Niarakis
  • Yacine Bounab
  • Luca Grieco
  • Romain Roncagalli
  • Anne-Marie Hesse
  • Jérôme Garin
  • Bernard Malissen
  • Marc Daëron
  • Denis ThieffryEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 382)


A global and rigorous understanding of the signaling pathways and cross-regulatory processes involved in mast cell activation requires the integration of published information with novel functional datasets into a comprehensive computational model. Based on an exhaustive curation of the existing literature and using the software CellDesigner, we have built and annotated a comprehensive molecular map for the FcεRI signaling network. This map can be used to visualize and interpret high-throughput expression data. Furthermore, leaning on this map and using the logical modeling software GINsim, we have derived a qualitative dynamical model, which recapitulates the most salient features of mast cell activation. The resulting logical model can be used to explore the dynamical properties of the system and its responses to different stimuli, in normal or mutant conditions.


Mast Cell Lipid Raft Mast Cell Activation Logical Rule System Biology Graphical Notation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project was supported by the ANR through the MI2 project iSa and by the proteomics ProFI infrastructure, as well as by the French excellence initiatives MemoLife LabEx and PSL* IdEx.


  1. Alvarez-Errico D, Lessmann E, Rivera J (2009) Adapters in the organization of mast cell signaling. Immunol Rev 232(1):195–217PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bérenguier D, Chaouiya C, Monteiro PT, Naldi A, Remy E, Thieffry D, Tichit L (2013) Dynamical modeling and analysis of large cellular regulatory networks. Chaos 23(2):025114PubMedCrossRefGoogle Scholar
  3. Bonnet E, Calzone L, Rovera D, Stoll G, Barillot E, Zinovyev A (2013) BiNoM 2.0, a Cytoscape plugin for accessing and analyzing pathways using standard systems biology formats. BMC Syst Biol 7:18PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bounab Y, Hesse AM, Iannascoli B, Grieco L, Couté Y, Niarakis A, Roncagalli R, Lie E, Lam KP, Demangel C, Thieffry D, Garin J, Malissen B, Daëron M (2013) Proteomic analysis of the SH2domain-containing leukocyte protein of 76 kDa (SLP76) interactome. Mol Cell Proteomics 12:2874–2889PubMedCrossRefGoogle Scholar
  5. Calzone L, Gelay A, Zinovyev A, Radvanyi F, Barillot E (2008) A comprehensive modular map of molecular interactions in RB/E2F pathway. Mol Syst Biol 4:173PubMedCrossRefPubMedCentralGoogle Scholar
  6. Caron E, Ghosh S, Matsuoka Y, Ashton-Beaucage D, Therrien M, Lemieux S, Kitano H (2010) A comprehensive map of the mTOR signaling network. Mol Syst Biol 6:453PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chaouiya C, Naldi A, Thieffry D (2012) Logical modelling of gene regulatory networks with GINsim. Methods Mol Biol 804:463–479PubMedCrossRefGoogle Scholar
  8. Chaouiya C, Berenguier D, Keating SM, Naldi A, van Iersel MP, Rodriguez N, Dräger A, Büchel F, Cokelaer T, Kowal B, Wicks B, Gonçalves E, Dorier J, Page M, Monteiro PT, von Kamp A, Xenarios I, de Jong H, Hucka M, Klamt S, Thieffry D, Le Novère N, Saez-Rodriguez J, Helikar T (2013) SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools. BMC Syst Biol 7:135PubMedCrossRefPubMedCentralGoogle Scholar
  9. Daëron M, Malbec O, Latour S, Arock M, Fridman WH (1995a) Regulation of high-affinity IgE receptor-mediated mast cell activation by murine low-affinity IgG receptors. J Clin Invest 95(2):577–585Google Scholar
  10. Daëron M, Latour S, Malbec O, Espinosa E, Pina P, Pasmans S, Fridman WH (1995b) The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fc gamma RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity 3(5):635–646Google Scholar
  11. Funahashi A, Tanimura N, Morohashi M, Kitano H (2003) Cell Designer: a process diagram editor for gene-regulatory and biochemical networks. BIOSILICO 1:159–162CrossRefGoogle Scholar
  12. Gilfillan AM, Tkaczyk C (2006) Integrated signalling pathways for mast-cell activation. Nat Rev Immunol 6(3):218–230PubMedCrossRefGoogle Scholar
  13. Gilfillan AM, Beaven MA (2011) Regulation of mast cell responses in health and disease. Crit Rev Immunol 31(6):475–529PubMedCrossRefPubMedCentralGoogle Scholar
  14. Glass L, Siegelmann HT (2010) Logical and symbolic analysis of robust biological dynamics. Curr Opin Genet Dev 20(6):644–649PubMedCrossRefGoogle Scholar
  15. Goldstein B, Faeder JR, Hlavacek WS, Blinov ML, Redondo A, Wofsy C (2002) Modeling the early signaling events mediated by aggregation of FceRI. Mol Immunol 38(16–18):1213–1219PubMedCrossRefGoogle Scholar
  16. Grieco L, Calzone L, Bernard-Pierrot I, Radvanyi F, Kahn-Perlès B, Thieffry D (2013) Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput Biol 9:e1003286PubMedCrossRefPubMedCentralGoogle Scholar
  17. Helikar T, Kochi N, Kowal B, Dimri M, Naramura M, Raja SM, Band V, Band H, Rogers JA (2013) A comprehensive, multi-scale dynamical model of ErbB receptor signal transduction in human mammary epithelial cells. PLoS ONE 8(4):e61757PubMedCrossRefPubMedCentralGoogle Scholar
  18. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novère N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531PubMedCrossRefGoogle Scholar
  19. Iwaki S, Spicka J, Tkaczyk C, Jensen BM, Furumoto Y, Charles N, Kovarova M, Rivera J, Horejsi V, Metcalfe DD, Gilfillan AM (2008) Kit- and Fc epsilonRI-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells. Cell Signal 20(1):195–205PubMedCrossRefPubMedCentralGoogle Scholar
  20. Jabril-Cuenod B, Zhang C, Scharenberg AM, Paolini R, Numerof R, Beaven MA, Kinet JP (1996) Syk-dependent phosphorylation of Shc. A potential link between FcepsilonRI and the Ras/mitogen-activated protein kinase signaling pathway through SOS and Grb2. J Biol Chem 271(27):16268–16272PubMedCrossRefGoogle Scholar
  21. Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L, Lewis S, Birney E, Stein L (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33:D428–D432PubMedCrossRefPubMedCentralGoogle Scholar
  22. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30PubMedCrossRefPubMedCentralGoogle Scholar
  23. Kawakami Y, Kitaura J, Satterthwaite AB, Kato RM, Asai K, Hartman SE, Maeda-Yamamoto M, Lowell CA, Rawlings DJ, Witte ON, Kawakami T (2000) Redundant and opposing functions of two tyrosine kinases, Btk and Lyn, in mast cell activation. J Immunol 165(3):1210–1219PubMedCrossRefGoogle Scholar
  24. Kinet JP (1999) The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Annu Rev Immunol 17:931–972PubMedCrossRefGoogle Scholar
  25. Klipp E, Liebermeister W, Helbig A, Kowald A, Schaber J (2007) Systems biology standards—the community speaks. Nat Biotech 25:390–391CrossRefGoogle Scholar
  26. Kovárová M, Tolar P, Arudchandran R, Dráberová L, Rivera J, Dráber P (2001) Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcepsilon receptor I aggregation. Mol Cell Biol 21(24):8318–8328PubMedCrossRefPubMedCentralGoogle Scholar
  27. Kraft S, Kinet JP (2007) New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 7(5):365–378PubMedCrossRefGoogle Scholar
  28. Krull M, Pistor S, Voss N, Kel A, Reuter I, Kronenberg D, Michael H, Schwarzer K, Potapov A, Choi C, Kel-Margoulis O, Wingender E (2006) TRANSPATH: an information resource for storing and visualizing signaling pathways and their pathological aberrations. Nucleic Acids Res 34:D546–D551PubMedCrossRefPubMedCentralGoogle Scholar
  29. Kuperstein I, Cohen DP, Pook S, Viara E, Calzone L, Barillot E, Zinovyev A (2013) NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps. BMC Syst Biol 7(1):100PubMedCrossRefPubMedCentralGoogle Scholar
  30. Le Novere N, Finney A, Hucka M, Bhalla US, Campagne F, Collado-Vides J, Crampin EJ, Halstead M, Klipp E, Mendes P, Nielsen P, Sauro H, Shapiro B, Snoep JL, Spence HD, Wanner BL (2005) Minimum information requested in the annotation of biochemical models (MIRIAM). Nat Biotech 23:1509–1515CrossRefGoogle Scholar
  31. Liu Q, Sasaki T, Kozieradzki I, Wakeham A, Itie A, Dumont DJ, Penninger JM (1999) SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes Dev 13(7):786–791PubMedCrossRefPubMedCentralGoogle Scholar
  32. Malbec O, Fong DC, Turner M, Tybulewicz VL, Cambier JC, Fridman WH, Daëron M (1998) Fc epsilon receptor I-associated lyn-dependent phosphorylation of Fc gamma receptor IIB during negative regulation of mast cell activation. J Immunol 160(4):1647–1658PubMedGoogle Scholar
  33. Mendoza L (2006) A network model for the control of the differentiation process in Th cells. Biosystems 84(2):101–114PubMedCrossRefGoogle Scholar
  34. Nag A, Faeder JR, Goldstein B (2010) Shaping the response: the role of FcεRI and Syk expression levels in mast cell signaling. IET Syst Biol 4(6):334–347PubMedCrossRefPubMedCentralGoogle Scholar
  35. Naldi A, Berenguier D, Fauré A, Lopez F, Thieffry D, Chaouiya C (2009) Logical modelling of regulatory networks with GINsim 2.3. Biosystems 97(2):134–139PubMedCrossRefGoogle Scholar
  36. Naldi A, Remy E, Thieffry D, Chaouiya C (2011) Dynamically consistent reduction of logical regulatory graphs. Theor Comput Sci 412(21):2207–2218CrossRefGoogle Scholar
  37. Oda K, Matsuoka Y, Funahashi A, Kitano H (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1(2005):0010PubMedGoogle Scholar
  38. Saez-Rodriguez J, Mirschel S, Hemenway R, Klamt S, Gilles ED, Ginkel M (2006) Visual setup of logical models of signaling and regulatory networks with ProMoT. BMC Bioinformatics 7:506PubMedCrossRefPubMedCentralGoogle Scholar
  39. Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, Arndt B, Haus UU, Weismantel R, Gilles ED, Klamt S, Schraven B (2007) A logical model provides insights into T cell receptor signaling. PLoS Comput Biol 3(8):e163PubMedCrossRefPubMedCentralGoogle Scholar
  40. Saitoh S, Arudchandran R, Manetz TS, Zhang W, Sommers CL, Love PE, Rivera J, Samelson LE (2000) LAT is essential for Fc(epsilon)RI-mediated mast cell activation. Immunity 12(5):525–535PubMedCrossRefGoogle Scholar
  41. Samaga R, Saez-Rodriguez J, Alexopoulos LG, Sorger PK, Klamt S (2009) The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput Biol 5(8):e1000438PubMedCrossRefPubMedCentralGoogle Scholar
  42. Sahin O, Fröhlich H, Löbke C, Korf U, Burmester S, Majety M, Mattern J, Schupp I, Chaouiya C, Thieffry D, Poustka A, Wiemann S, Beissbarth T, Arlt D (2009) Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst Biol 3:1PubMedCrossRefPubMedCentralGoogle Scholar
  43. Setoguchi R, Kinashi T, Sagara H, Hirosawa K, Takatsu K (1998) Defective degranulation and calcium mobilization of bone-marrow derived mast cells from Xid and Btk-deficient mice. Immunol Lett 64(2–3):109–118PubMedCrossRefGoogle Scholar
  44. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504PubMedCrossRefPubMedCentralGoogle Scholar
  45. Simon M, Vanes L, Geahlen RL, Tybulewicz VL (2005) Distinct roles for the linker region tyrosines of Syk in FcepsilonRI signaling in primary mast cells. J Biol Chem 280(6):4510–4517PubMedCrossRefGoogle Scholar
  46. Thieffry D (2007) Dynamical roles of biological regulatory circuits. Brief Bioinform 8:220–225PubMedCrossRefGoogle Scholar
  47. Tůmová M, Koffer A, Simíček M, Dráberová L, Dráber P (2010) The transmembrane adaptor protein NTAL signals to mast cell cytoskeleton via the small GTPase Rho. Eur J Immunol 40(11):3235–3245PubMedCrossRefGoogle Scholar
  48. Young RM, Holowka D, Baird B (2003) A lipid raft environment enhances Lyn kinase activity by protecting the active site tyrosine from dephosphorylation. J Biol Chem 278(23):20746–20752PubMedCrossRefGoogle Scholar
  49. Zhu M, Liu Y, Koonpaew S, Granillo O, Zhang W (2004) Positive and negative regulation of FcepsilonRI-mediated signaling by the adaptor protein LAB/NTAL. J Exp Med 200(8):991–1000PubMedCrossRefPubMedCentralGoogle Scholar
  50. Zinovyev A, Viara E, Calzone L, Barillot E (2008) BiNoM: a Cytoscape plugin for manipulating and analyzing biological networks. Bioinformatics 24(6):876–877PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anna Niarakis
    • 1
    • 2
    • 3
  • Yacine Bounab
    • 4
    • 6
  • Luca Grieco
    • 1
    • 2
    • 3
  • Romain Roncagalli
    • 5
    • 7
    • 8
  • Anne-Marie Hesse
    • 9
    • 10
    • 11
  • Jérôme Garin
    • 9
    • 10
    • 11
  • Bernard Malissen
    • 5
    • 7
    • 8
  • Marc Daëron
    • 13
    • 12
  • Denis Thieffry
    • 1
    • 2
    • 3
    Email author
  1. 1.Institut de Biologie de l’ENS (IBENS)Ecole Normale SupérieureParisFrance
  2. 2.INSERM, U1024ParisFrance
  3. 3.CNRS, UMR 8197ParisFrance
  4. 4.Unité d’Allergologie Moléculaire et Cellulaire, Département d’ImmunologieInstitut PasteurParisFrance
  5. 5.Centre d’Immunologie de Marseille-Luminy (CIML)Université Aix MarseilleMarseilleFrance
  6. 6.INSERM, UMS20ParisFrance
  7. 7.INSERM, U1104MarseilleFrance
  8. 8.CNRS, UMR7280MarseilleFrance
  9. 9.Laboratoire de Biologie à Grande EchelleCEA, IRTSVGrenobleFrance
  10. 10.INSERM, U1038GrenobleFrance
  11. 11.Laboratoire de Biologie à Grande EchelleUniversité de Grenoble Alpes, iRTSVGrenobleFrance
  12. 12.Institut PasteurParisFrance
  13. 13.Inserm, U1104Centre d’Immunologie de Marseille-LuminyMarseilleFrance

Personalised recommendations