Clearing Connections by Few Agents

  • Christos Levcopoulos
  • Andrzej Lingas
  • Bengt J. Nilsson
  • Paweł Żyliński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8496)

Abstract

We study the problem of clearing connections by agents placed at some vertices in a directed graph. The agents can move only along directed paths. The objective is to minimize the number of agents guaranteeing that any pair of vertices can be connected by a underlying undirected path that can be cleared by the agents. We provide several results on the hardness, approximability and parameterized complexity of the problem. In particular, we show it to be: NP-hard, 2-approximable in polynomial-time, and solvable exactly in O(αn 322 α ) time, where α is the number of agents in the solution. In addition, we give a simple linear-time algorithm optimally solving the problem in digraphs whose underlying graphs are trees. Finally, we discuss a related problem, where the task is to clear with a minimum number of agents a subgraph of the underlying graph containing its spanning tree. We show that this problem also admits a 2-approximation in polynomial time.

Keywords

clearing paths NP-hardness approximation parametrized complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Prałat, P., Wormald, N.: Cleaning regular graphs with brushes. SIAM Journal on Discrete Mathematics 23(1), 233–250 (2008)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press (1962)Google Scholar
  4. 4.
    Gaspers, S., Messinger, M.-E., Nowakowski, R.J., Prałat, P.: Clean the graph before you draw it! Information Processing Letters 109(10), 463–467 (2009)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Gaspers, S., Messinger, M.-E., Nowakowski, R.J., Prałat, P.: Parallel cleaning of a network with brushes. Discrete Applied Mathematics 158(5), 467–478 (2010)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Gordinowicz, P., Nowakowski, R.J., Prałat, P.: Polish — Let us play the cleaning game. Theoretical Computer Science 463, 123–132 (2012)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal of the Society for Industrial and Applied Mathematics 10(1), 196–210 (1961)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Messinger, M.-E., Prałat, P., Nowakowski, R.J., Wormald, N.: Cleaning random d-regular graphs with brushes using a degree-greedy algorithm. In: Janssen, J., Prałat, P. (eds.) CAAN 2007. LNCS, vol. 4852, pp. 13–26. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Messinger, M.-E., Nowakowski, R.J., Prałat, P.: Cleaning a network with brushes. Theoretical Computer Science 399, 191–205 (2008)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Messinger, M.-E., Nowakowski, R.J., Prałat, P.: Cleaning with Brooms. Graphs and Combinatorics 27(2), 251–267 (2011)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Prałat, P.: Cleaning random graphs with brushes. Australasian Journal of Combinatorics 43, 237–251 (2009)MATHMathSciNetGoogle Scholar
  12. 12.
    Prałat, P.: Cleaning random d-regular graphs with Brooms. Graphs and Combinatorics 27(4), 567–584 (2011)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Ren, W., Zhao, Q.: A note on Algorithms for connected set cover problem and fault-tolerant connected set cover problem. Theoretical Computer Science 412(45), 6451–6454 (2011)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Shuai, T.-P., Hu, X.-D.: Connected set cover problem and its applications. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 243–254. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christos Levcopoulos
    • 1
  • Andrzej Lingas
    • 1
  • Bengt J. Nilsson
    • 2
  • Paweł Żyliński
    • 3
  1. 1.Lund UniversityLundSweden
  2. 2.Malmö UniversityMalmöSweden
  3. 3.University of GdańskGdańskPoland

Personalised recommendations