Advertisement

Approximability of Latin Square Completion-Type Puzzles

  • Kazuya Haraguchi
  • Hirotaka Ono
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8496)

Abstract

Among many variations of pencil puzzles, Latin square Completion-Type puzzles (LSCP), such as Sudoku, Futoshiki and BlockSum, are quite popular for puzzle fans. Concerning these puzzles, the solvability has been investigated from the viewpoint of time complexity in the last decade; it has been shown that, in most of these puzzles, it is NP-complete to determine whether a given puzzle instance has a proper solution. In this paper, we investigate the approximability of LSCP. We formulate LSCP as the maximization problem that asks to fill as many cells as possible, under the Latin square condition and the inherent condition. We then propose simple generic approximation algorithms for LSCP and analyze their approximation ratios.

Keywords

Latin square Completion-Type puzzles approximation algorithms Sudoku Futoshiki BlockSum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson, D.: Hashiwokakero is NP-complete. Information Processing Letters 109(19), 1145–1146 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Béjar, R., Fernández, C., Mateu, C., Valls, M.: The Sudoku completion problem with rectangular hole pattern is NP-complete. Discrete Mathematics 312(22), 3306–3315 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Colbourn, C.J.: The complexity of completing partial latin squares. Discrete Applied Mathematics 8(1), 25–30 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Cygan, M.: Improved approximation for 3-dimensional matching via bounded pathwidth local search. arXiv preprint arXiv:1304.1424 (2013)Google Scholar
  5. 5.
    Demaine, E.D., Okamoto, Y., Uehara, R., Uno, Y.: Computational complexity and an integer programming model of Shakashaka. In: CCCG, pp. 31–36 (2013)Google Scholar
  6. 6.
    Easton, T., Parker, R.G.: On completing latin squares. Discrete Applied Mathematics 113(2), 167–181 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Hajirasouliha, I., Jowhari, H., Kumar, R., Sundaram, R.: On completing latin squares. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 524–535. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Haraguchi, K.: The number of inequality signs in the design of Futoshiki puzzle. Journal of Information Processing 21(1), 26–32 (2013)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Haraguchi, K., Ono, H.: Blocksum is NP-complete. IEICE Transactions on Information and Systems 96(3), 481–488 (2013)CrossRefGoogle Scholar
  10. 10.
    Hearn, R.A., Demaine, E.D.: Games, puzzles, and computation. AK Peters, Limited (2009)Google Scholar
  11. 11.
    Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM Journal on Discrete Mathematics 2(1), 68–72 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103 (1972)Google Scholar
  13. 13.
    Kölker, J.: Kurodoko is NP-complete. Journal of Information Processing 20(3), 694–706 (2012)CrossRefGoogle Scholar
  14. 14.
    Kumar, S.R., Russell, A., Sundaram, R.: Approximating latin square extensions. Algorithmica 24(2), 128–138 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Miyamoto, T.: Black Belt KenKen: 300 Puzzles. Puzzlewright (2013)Google Scholar
  16. 16.
    Miyamoto, T.: Brown Belt KenKen: 300 Puzzles. Puzzlewright (2013)Google Scholar
  17. 17.
    Miyamoto, T.: Green Belt KenKen: 300 Puzzles. Puzzlewright (2013)Google Scholar
  18. 18.
    Miyamoto, T.: White Belt KenKen: 300 Puzzles. Puzzlewright (2013)Google Scholar
  19. 19.
    Yato, T., Seta, T.: Complexity and completeness of finding another solution and its application to puzzles. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 86(5), 1052–1060 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kazuya Haraguchi
    • 1
  • Hirotaka Ono
    • 2
  1. 1.Faculty of CommerceOtaru University of CommerceJapan
  2. 2.Faculty of EconomicsKyushu UniversityJapan

Personalised recommendations