Towards an Algorithmic Guide to Spiral Galaxies

  • Guillaume Fertin
  • Shahrad Jamshidi
  • Christian Komusiewicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8496)


In this paper, we are interested in the one-player game Spiral Galaxies, and study it from an algorithmic viewpoint. Spiral Galaxies has been shown to be NP-hard [Friedman, 2002] more than a decade ago, but so far it seems that no one has dared exploring its algorithmic universe. We take this trip and visit some of its corners.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Demaine, E.D.: Playing games with algorithms: Algorithmic combinatorial game theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 18–32. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Downey, R.G., Fellows, M.R.: Fundamentals of parameterized complexity. In: Undergraduate Texts in Computer Science. Springer, Heidelberg (2012)Google Scholar
  3. 3.
    Ferrari, L., Sankar, P., Sklansky, J.: Minimal rectangular partitions of digitized blobs. Computer Vision, Graphics, and Image Processing 28(1), 58–71 (1984)CrossRefMATHGoogle Scholar
  4. 4.
    Fomin, F.V., Kratsch, D.: Exact exponential algorithms. Springer, Heidelberg (2010)CrossRefMATHGoogle Scholar
  5. 5.
    Friedman, E.: Spiral galaxies puzzles are NP-complete (2002),
  6. 6.
    Hearn, R.A., Demaine, E.D.: Games, puzzles, and computation. AK Peters, Limited (2009)Google Scholar
  7. 7.
    Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathematics of Operations Research 12(3), 415–440 (1987)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Robertson, N., Sanders, D.P., Seymour, P.D., Thomas, R.: The four-colour theorem. J. Comb. Theory, Ser. B 70(1), 2–44 (1997)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Guillaume Fertin
    • 1
  • Shahrad Jamshidi
    • 1
  • Christian Komusiewicz
    • 1
  1. 1.LINA - UMR CNRS 6241Université de NantesFrance

Personalised recommendations