Detecting Abnormal Mammographic Cases in Temporal Studies Using Image Registration Features

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8539)


Image registration is increasingly being used to help radiologists when comparing temporal mammograms for lesion detection and classification. This paper evaluates the use of image and deformation features extracted from image registration results in order to detect abnormal cases with masses. Using a dataset of 264 mammographic images from 66 patients (33 normals and 33 with masses) results show that the use of a non-rigid registration method clearly improves detection results compared to no registration (AUC: 0.76 compared to 0.69). Moreover, feature combination using left and right breasts further improves the performance (AUC to 0.88) compared to single image features.


Image Registration Registration Algorithm Feature Combination Cost Matrix Mammographic Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oliver, A., Freixenet, J., Marti, J., Perez, E., Pont, J., Denton, E.R., Zwiggelaar, R.: A review of automatic mass detection and segmentation in mammographic images. Medical Image Analysis 14(2), 87–110 (2010)CrossRefGoogle Scholar
  2. 2.
    Samulski, M., Karssemeijer, N.: Optimizing case-based detection performance in a multiview CAD system for mammography. IEEE Transactions on Medical Imaging 30(4), 1001–1009 (2011)CrossRefGoogle Scholar
  3. 3.
    Marias, K., Behrenbruch, C.P., Parbhoo, S., Seifalian, A., Brady, M.: A registration framework for the comparison of mammogram sequences. IEEE Transactions on Medical Imaging 24(6), 782–790 (2005)CrossRefGoogle Scholar
  4. 4.
    Díez, Y., Oliver, A., Lladó, X., Freixenet, J., Martí, J., Vilanova, J., Martí, R.: Revisiting intensity-based image registration applied to mammography. IEEE Transactions on Information Technology in Biomedicine 15(5), 716–725 (2011)CrossRefGoogle Scholar
  5. 5.
    Martí, R., Raba, D., Oliver, A., Zwiggelaar, R.: Mammographic registration: Proposal and evaluation of a new approach. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds.) IWDM 2006. LNCS, vol. 4046, pp. 213–220. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Kwok, S.M., Chandrasekhar, R., Attikiouzel, Y., Rickard, M.: Automatic pectoral muscle segmentation on mediolateral oblique view mammograms. IEEE Transactions on Medical Imaging 23(9), 1129–1140 (2004)CrossRefGoogle Scholar
  7. 7.
    Tortajada, M., Oliver, A., Martí, R., Vilagran, M., Ganau, S., Tortajada, L., Sentís, M., Freixenet, J.: Adapting breast density classification from digitized to full-field digital mammograms. In: Maidment, A.D.A., Bakic, P.R., Gavenonis, S. (eds.) IWDM 2012. LNCS, vol. 7361, pp. 561–568. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Zheng, Y., Doermann, D.: Robust point matching for nonrigid shapes by preserving local neighborhood structures. PAMI 28(4), 643–649 (2006)CrossRefGoogle Scholar
  9. 9.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)CrossRefGoogle Scholar
  10. 10.
    Zitova, B.: Image registration methods: A survey. Image and Vision Computing 21(11), 977–1000 (2003)CrossRefGoogle Scholar
  11. 11.
    Duin, R., Juszczack, P., Paclik, P., Pekalska, E., de Ridderand, D.M.J., Tax, D.: PRTools4, A Matlab Toolbox for Pattern Recognition. Delft University of Technology (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Computer Vision and Robotics GroupUniversity of GironaSpain
  2. 2.Department of Computer ScienceAberystwyth UniversityWalesUK

Personalised recommendations