Image Quality of Thick Average Intensity Pixel Slabs Using Statistical Artifact Reduction in Breast Tomosynthesis

  • Magnus Dustler
  • Pontus Timberg
  • Anders Tingberg
  • Sophia Zackrisson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8539)

Abstract

Digital Breast Tomosynthesis (DBT) has the potential to replace or supplement Digital Mammography (DM). Studies have shown that it takes radiologists more time to read DBT examinations compared with DM. The slice separation of image volumes has been set to 1 mm on most systems. By using thicker slices review time could be reduced. This paper investigates the possibility of using 2 mm Average Intensity Pixel (AIP) slabs for image review. The thicker slabs were created using a method based on statistical artifact reduction and super-resolution. Six radiologists were presented with 20 sets of images containing 16 tumor masses and 8 micro-calcification clusters. They ranked 2 mm slabbed sets relative to standard 1 mm. Visibility (P = .0044) of micro-calcifications improved and there was no significant effect on mass visibility (P = .46). The results indicate that it is possible to review DBT-volumes with 2 mm slabs without compromising image quality.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Svahn, T., Andersson, I., Chakraborty, D., et al.: The diagnostic accuracy of dual-view digital mammography, single-view breast tomosynthesis and a dual-view combination of breast tomosynthesis and digital mammography in a free-response observer performance study. Rad. Prot. Dos. 139(1-3), 113–117 (2010)CrossRefGoogle Scholar
  2. 2.
    Andersson, I., Ikeda, D.M., Zackrisson, S., et al.: Breast tomosynthesis and digital mammography: A comparison of breast cancer visibility and BIRADS classification in a population of cancers with subtle mammographic findings. Eur. Radiol. 18(12), 2817–2825 (2008)CrossRefGoogle Scholar
  3. 3.
    Gur, D., Abrams, G.S., Chough, D.M., et al.: Digital breast tomosynthesis: Observer performance study. Am. J. Roentgenol. 193(2), 586–591 (2009)CrossRefGoogle Scholar
  4. 4.
    Wallis, M.G., Moa, E., Zanca, F., et al.: Two-view and single-view tomosynthesis versus full-field digital mammography: High-resolution X-ray imaging observer study. Radiology 262(3), 788–796 (2012)CrossRefGoogle Scholar
  5. 5.
    Good, W.F., Abrams, G.S., Catullo, V.J., et al.: Digital breast tomosynthesis: A pilot observer study. Am. J. Roentgenol. 190(4), 865–869 (2008)CrossRefGoogle Scholar
  6. 6.
    Skaane, P., Gullien, R., Bjørndal, H., et al.: Digital breast tomosynthesis (DBT): Initial experience in a clinical setting. Acta Radiol. 53(5), 524–529 (2012)CrossRefGoogle Scholar
  7. 7.
    Good, W.F., Abrams, G.S., Catullo, V.J., et al.: Digital breast tomosynthesis: A pilot observer study. AJR Am. J. Roentgenol. 190(4), 865–869 (2008)CrossRefGoogle Scholar
  8. 8.
    Mertelmeier, T., Orman, J., Haerer, W., et al.: Optimizing filtered backprojection reconstruction for a breast tomosynthesis prototype device. In: Spie Medical Imaging, pp. 61420F-1–61420F-12. International Society for Optics and Photonics, Bellingham (2006)Google Scholar
  9. 9.
    Wu, T., Moore, R.H., Kopans, D.B.: Voting strategy for artifact reduction in digital breast tomosynthesis. Med. Phys. 33, 2461 (2006)CrossRefGoogle Scholar
  10. 10.
    Wu, T., Moore, R.H., Rafferty, E.A., et al.: A comparison of reconstruction algorithms for breast tomosynthesis. Med. Phys. 31(9), 2636–2647 (2004)CrossRefGoogle Scholar
  11. 11.
    Hu, Y.H., Zhao, B., Zhao, W.: Image artifacts in digital breast tomosynthesis: Investigation of the effects of system geometry and reconstruction parameters using a linear system approach. Med. Phys. 35(12), 5242–5252 (2008)CrossRefGoogle Scholar
  12. 12.
    Zhang, Y., Chan, H.P., Sahiner, B., et al.: Investigation of the Z-axis resolution of breast tomosynthesis mammography systems. In: SPIE Medical Imaging, pp. 65104A-65104A-8. International Society for Optics and Photonics, Bellingham (2007)Google Scholar
  13. 13.
    Dustler, M., Andersson, I., Förnvik, D., et al.: A Study of the Feasibility of using slabbing to reduce Tomosynthesis Review Time. In: SPIE Medical Imaging, pp. 86731L–86731L. International Society for Optics and Photonics, Bellingham (2013)Google Scholar
  14. 14.
    Kopans, D., Gavenonis, S., Halpern, E., et al.: Calcifications in the breast and digital breast tomosynthesis. Breast J. 17(6), 638–644 (2011)CrossRefGoogle Scholar
  15. 15.
    Sechopoulos, I., Ghetti, C.: Optimization of the acquisition geometry in digital tomosynthesis of the breast. Med. Phys. 36, 1199 (2009)CrossRefGoogle Scholar
  16. 16.
    Abdurahman, S., Jerebko, A., Mertelmeier, T., Lasser, T., Navab, N.: Out-of-plane artifact reduction in tomosynthesis based on regression modeling and outlier detection. In: Maidment, A.D.A., Bakic, P.R., Gavenonis, S. (eds.) IWDM 2012. LNCS, vol. 7361, pp. 729–736. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Håkansson, M., Svensson, S., Zachrisson, S., et al.: ViewDEX: An efficient and easy-to-use software for observer performance studies. Rad. Prot. Dos. 139(1-3), 42–51 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Magnus Dustler
    • 1
  • Pontus Timberg
    • 2
  • Anders Tingberg
    • 1
  • Sophia Zackrisson
    • 2
  1. 1.Medical Radiation Physics, Department of Clinical Sciences MalmöLund UniversityMalmöSweden
  2. 2.Diagnostic Radiology, Department of Clinical Sciences MalmöLund UniversityMalmöSweden

Personalised recommendations