Advertisement

Clinical Efficacy of Novel Image Processing Techniques in the Framework of Filtered Back Projection (FBP) with Digital Breast Tomosynthesis (DBT)

  • Nachiko Uchiyama
  • Minoru Machida
  • Hitomi Tani
  • Mari Kikuchi
  • Yasuaki Arai
  • Kyoichi Otsuka
  • Andreas Fieselmann
  • Anna Jerebko
  • Thomas Mertelmeier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8539)

Abstract

Digital breast tomosynthesis (DBT) slices are reconstructed from projections acquired within a limited angular range. Out-of-plane artifacts are inevitable in reconstructed DBT images. In this study, we evaluated novel image processing techniques in the framework of filtered backprojection (FBP) and compared the results with reconstruction using a previously used FBP method. The novel FBP reconstruction has an adapted filter kernel, uses unbinned projections, performs an adaptive collapsing scheme and statistical artifact reduction, and applies iterative filtering in the image domain. Fifty-four image pairs were evaluated by three experienced radiologists. The images were compared on a 7-point scale (-3, -2, -1, 0, +1, +2, and +3) according to the following five categories: (1) visibility of noise, (2) diagnostic certainty regarding masses, (3) diagnostic certainty regarding microcalcifications, (4) visibility of structures in the pectoral muscle, and (5) overall image quality. The results showed a statistically significant superiority of the novel FBP reconstruction in comparison with standard FBP (p < 0.05). In particular, the improvement of the diagnostic certainty related to microcalcifications with the novel FBP is noteworthy.

Keywords

Tomosynthesis Image Processing DBT FBP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poplack, S.P., Tosteson, T.D., Kogel, C.A., et al.: Digital breast tomosynthesis: initial experience in 98 women with abnormal digital screening mammography. AJR 189(3), 616–623 (2007)CrossRefGoogle Scholar
  2. 2.
    Andersson, I., Ikeda, D.M., Zackrisson, S., et al.: Breast tomosynthesis and digital mammography: a comparison of breast cancer visibility and BIRADS classification in a population of cancers with subtle mammographic findings. Eur. Radiol. 18(12), 2817–2825 (2008)CrossRefGoogle Scholar
  3. 3.
    Good, W.F., Abrams, G.S., Catullo, V.J., et al.: Digital breast tomosynthesis: a pilot observer study. AJR 190(4), 865–869 (2008)CrossRefGoogle Scholar
  4. 4.
    Gennaro, G., Toledano, A., Di Maggio, C., et al.: Digital breast tomosynthesis versus digital mammography: a clinical performance study. Eur. Radiol. 20(7), 1545–1553 (2010)CrossRefGoogle Scholar
  5. 5.
    Uchiyama, N., Kinoshita, T., Akashi, S., et al.: Diagnostic Performance of Combined Full Field Digital Mammography (FFDM) and Digital Breast Tomosynthesis (DBT) in comparison with Full Field Digital Mammography (FFDM). In: CARS 2011, pp. 32–33. Springer (2011)Google Scholar
  6. 6.
    Förnvik, D., Zackrisson, S., Ljungberg, O., et al.: Breast tomosynthesis: Accuracy of tumor measurement compared with digital mammography and ultrasonography. Acta. Radiol. 51(3), 240–247 (2010)CrossRefGoogle Scholar
  7. 7.
    Dobbins, J.T., Godfrey, D.J.: Digital x-ray tomosynthesis: current state of the art and clinical potential. Phys. Med. Biol. 106, R65–R106 (2003)CrossRefGoogle Scholar
  8. 8.
    Rinkel, J., Dillon, W.P., Funk, T., Gould, R., Prevrhal, S.: Computed tomographic metal artifact reduction for the detection and quantitation of small features near large metallic implants: a comparison of published methods. J. Comput. Assist. Tomogr. 32(4), 621–629 (2008)CrossRefGoogle Scholar
  9. 9.
    Mertelmeier, T., Orman, J., Haerer, W., et al.: Optimizing filtered backprojection reconstruction for a breast tomosynthesis prototype device. In: Proc. SPIE Medical Imaging 2006, vol. 6142, p. 61420F (2006)Google Scholar
  10. 10.
    Wu, T., Moore, R.H., Kopans, D.B.: Voting strategy for artifact reduction in digital breast tomosynthesis. Medical Physics 33, 24612471 (2006)Google Scholar
  11. 11.
    Abdurahman, S., Jerebko, A., Mertelmeier, T., Lasser, T., Navab, N.: Out-of-Plane Artifact Reduction in Tomosynthesis Based on Regression Modeling and Outlier Detection. In: Maidment, A.D.A., Bakic, P.R., Gavenonis, S. (eds.) IWDM 2012. LNCS, vol. 7361, pp. 729–736. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Abdurahman, S., Dennerlein, F., Jerebko, A., Fieselmann, A., Mertelmeier, T.: Optimizing high resolution reconstruction. In: Digital Breast Tomosynthesis using Filtered Back Projection. accepted at IWDM 2014 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nachiko Uchiyama
    • 1
  • Minoru Machida
    • 1
  • Hitomi Tani
    • 1
  • Mari Kikuchi
    • 1
  • Yasuaki Arai
    • 1
  • Kyoichi Otsuka
    • 2
  • Andreas Fieselmann
    • 3
  • Anna Jerebko
    • 3
  • Thomas Mertelmeier
    • 3
  1. 1.Department of RadiologyNational Cancer CenterTokyoJapan
  2. 2.Siemens Japan K.K.TokyoJapan
  3. 3.Siemens AG, Healthcare SectorErlangenGermany

Personalised recommendations