Robot Avatars: The Material Culture of Human Activity in Earth Orbit

  • Alice GormanEmail author
Part of the Space and Society book series (SPSO)


This chapter discusses orbital debris from a cultural heritage perspective. It examines the cultural material related to space exploration with a specific focus on “space junk” and the increasing amount of material remains including thousands of satellites, rocket bodies, parts and piece of spacefaring objects. The author argues that the materials and design reflect social and political interactions with space as well as humanity’s adaptation to a new environment. The study of space heritage can add to the history of space exploration and contemporary life on Earth.


Global Navigation Satellite System Global Navigation Satellite System Earth Orbit Orbital Debris Space Situational Awareness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I’d like to particularly thank Marco Langbroek for his awesome photography skills and permission to use the photograph. Much gratitude to Charles Stross, who inspired me to start looking at Matrioshka brains, and provided valuable research leads. I would also like to thank Twitter colleagues @spacearcheology and @JohnJRoby who assisted in tracing obscure references and terms, and @SarahMay_1 and @LornaRichardson for transcontinental writing company in #madwriting.


  1. Amin, H. (2013). Role and impact of satellite broadcasting during the Arab Spring. Paper Presented at the Annual Meeting of the BEA, Las Vegas Hilton, Las Vegas, NV. Accessed December 13, 2013.
  2. ArabSat. (2013). Mission and vision. Accessed August 15, 2013
  3. Australia ICOMOS. (2013). The Burra Charter. The Australia ICOMOS Charter for places of cultural significance. Available at
  4. Belk, C. A., Robinson, J. H., Alexander, M. B., Cooke, W. J., & Pavelitz, S. D. (1997). Meteoroids and orbital debris. Effects on spacecraft. NASA Reference Publication 1408.Google Scholar
  5. Bonnet, G., & Tessier, C. (2007). Collaboration among a satellite swarm. In Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems. Article No 54. New York: ACM.Google Scholar
  6. Bradbury, R. (1952). A sound of thunder (pp. 20–21). Collier’s, 28 June.Google Scholar
  7. Bradbury, R. (1997–2000). Matrioshka brains, MS.Google Scholar
  8. Capelotti, P. J. (2010). The human archaeology of space. Lunar, planetary and interstellar relics of exploration. Jefferson: McFarland and Company.Google Scholar
  9. Carrigan Jr., R. A. (2008). IRAS-based whole-sky upper limit on Dyson spheres. Fermilab-pub008-352-AD.Google Scholar
  10. Collis, C. (2009). The geostationary orbit: A critical legal geography of space’s most valuable real estate. In D. Bell & M. Parker (Eds.), Space travel and culture: From Apollo to space tourism (pp. 47−65). Malden: Wiley-Blackwell/The Sociological Review.Google Scholar
  11. Crowther, R. (1994). The trackable debris population in low Earth orbit. Journal of the British Interplanetary Society, 47(4), 28–133.Google Scholar
  12. De Landa, M. (2006). A new philosophy of society: Assemblage theory and social complexity. London: Continuum.Google Scholar
  13. De Landa, M. (2002). Intensive science and virtual philosophy. New York: Continuum.Google Scholar
  14. Deleuze, G., & Guattari, F. (1987). A thousand plateaus: Capitalism and schizophrenia. Translated by Brian Massumi. Minneapolis: University of Minnesota Press.Google Scholar
  15. Dyson, F. (1960). Search for artificial stellar sources of infrared radiation. Science, 131(3414), 1667–1668.CrossRefGoogle Scholar
  16. Eutelsat. n.d. (a). Expanding reach and building a dynamic business. Accessed November 18, 2013.
  17. Eutelsat. n.d. (b). The Fleet 36° Eutelsat 36a. Accessed November 18, 2013.
  18. European Space Agency. (2013). Space debris. Accessed November 12, 2013.
  19. Flannery, Kent. (1968). Archaeological systems theory and early Mesoamerica. In B. J. Meggers (Ed.), Anthropological archaeology in the Americas (pp. 67–87). Washington: Anthropological Society of Washington.Google Scholar
  20. Goodrich, M. A., & Schultz, A. (2007). Human–robot interaction: A survey. Foundations and Trends in Human–Computer Interaction, 1, 203–275.CrossRefGoogle Scholar
  21. Gorman, A. C. (2009a). The gravity of archaeology. Archaeologies: The Journal of the World Archaeological Congress, 5(2), 344–359.CrossRefGoogle Scholar
  22. Gorman, A. C. (2009b). The cultural landscape of space. In A. Darrin & B. L. O’Leary (Eds.), The handbook of space engineering, archaeology and heritage (pp. 331–342). Boca Raton: CRC Taylor and Francis Press.Google Scholar
  23. Gorman, A. C. (2009c). The archaeology of space exploration. In D. Bell & M. Parker (Eds.), Space travel and culture: From Apollo to space tourism (pp. 129–142). Malden: Wiley-Blackwell/The Sociological Review.Google Scholar
  24. Gorman, A. C. (2009d). Beyond the space race: The significance of space sites in a new global context. In A. Piccini & C. Holtorf (Eds.), Contemporary archaeologies: Excavating now (pp. 161–180). Bern: Peter Lang.Google Scholar
  25. Gorman, A. C. (2005a). The cultural landscape of interplanetary space. Journal of Social Archaeology, 5(1), 85–107.CrossRefGoogle Scholar
  26. Gorman, A. C. (2005b). The archaeology of orbital space (pp. 338–357). In Australian Space Science Conference 2005. Melbourne: RMIT University.Google Scholar
  27. Gorman, A. C., & O’Leary, B. L. (2007). An ideological vacuum: The cold war in space. In J. Schofield & W. Cocroft (Eds.), A fearsome heritage: Diverse legacies of the cold war (pp. 73–92). Walnut Creek: Left Coast Press.Google Scholar
  28. Green, C., & Lomask, M. (1970). Vanguard: A history. Washington, DC: Scientific and Technical Information Division, National Aeronautics and Space Administration.Google Scholar
  29. Hyde, J. L. (2000a). As-flown shuttle orbiter meteoroid/orbital debris assessment, Phase I, JSC-28768.Google Scholar
  30. Hyde, J. L. (2000b). As-flown shuttle orbiter meteoroid/orbital debris assessment, Phase II, JSC-29070.Google Scholar
  31. Intelsat. (2014). Company facts. Accessed January 3, 2014.
  32. Izzo, D., & Pettazzi, L. (2007). Autonomous and distributed motion planning for satellite swarm. Journal of Guidance, Control and Dynamics, 30(2), 449–459.CrossRefGoogle Scholar
  33. Jehn, R., Agapov, V., & Hernández, C. (2005). The situation in the Geostationary ring. Advances in Space Research, 35, 1318–1327.CrossRefGoogle Scholar
  34. Johnston, E. (2013). List of satellites in geostationary orbit. Accessed January 8, 2014.
  35. Jugaku, J., & Nishima, S. (2000). A search for Dyson spheres around late-type stars in the solar neighbour III. In G. Lemarchand, & K. Meech (Eds.) Bioastronomy 99: A new era in the search for life (pp. 581–584). ASP Conference Series, vol. 213.Google Scholar
  36. Kessler, D. J., Johnson, N. L., Liou, J.-C., & Matney, M. (2010). The Kessler Syndrome: Implications to future space operations. Advances in the Astronautical Sciences, 137, 47–61.Google Scholar
  37. Kessler, D. J., & Cour-Palais, B. G. (1978). Collision frequency of artificial satellites: The creation of a debris belt. Journal of Geophysical Research, 83(A6), 2637–2646.CrossRefGoogle Scholar
  38. Krebs, G. (1996–2013a). Arabsat 2A, 2B. Gunter’s space pages. Accessed November 18, 2013.
  39. Krebs, G. (1996–2013b). New Dawn → Intelsat 28. Accessed November 18, 2013.
  40. Laroussi, F. (2003). Arabic and the new technologies. In J. Maurais & M. A. Morris (Eds.), Languages in a globalising world (pp. 250–259). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  41. Langbroek, M. (2012). PAN, other Geostationary satellites, and another UNID (this time Greg’s). Accessed August 21, 2013.
  42. Lee, B.-S., Yoola, H., Kim, H.-Y., & Kim, B.-Y. (2012). GEO satellite collision avoidance maneuver strategy against inclined GSO satellite. Paper presented at SpaceOps12, Stockholm.Google Scholar
  43. Levine, A. S. (Ed.) (1991). LDEF, 69 months in space: First post-retrieval symposium. Washington, D.C.: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program.Google Scholar
  44. Liou, J.-C., & Anz-Meador, P. (2010). An analysis of recent major breakups in the low Earth orbit region. Paper number IAC-10,A6,2,13,x6484. Accessed January 10, 2014.
  45. McCray, P. W. (2008). Keep watching the skies!: The story of Operation Moonwatch and the dawn of the space age. Princeton: Princeton University Press.Google Scholar
  46. Marcus, G. E., & Saka, E. (2006). Assemblage. Theory, Culture and Society, 23(2–3), 101–109.CrossRefGoogle Scholar
  47. Mehrholz, D., Leushacke, L., Flury, W., Jehn, R., Klinkrad, H., & Landgraf, M. (2002). Detecting, tracking and imaging space debris. ESA Bulletin, 109, 128–134.Google Scholar
  48. Miladi, N. (2006). Satellite TV news and the Arab diaspora in Britain: Comparing Al-Jazeera, the BBC and CNN. Journal of Ethnic and Migration Studies, 32(6), 947–960.CrossRefGoogle Scholar
  49. NASA Orbital Debris Program Office. (2012). Orbital debris frequently asked questions. Accessed August 1, 2013.
  50. NASA Marshall Space Flight Center. (2008). Advanced space transportation program: Paving the highway to space. Accessed August 18, 2013.
  51. NewSat. nd. Ku-band capacity. Accessed January 3, 2014.
  52. Orbital Sciences Corporation. (2013). Intelsat New Dawn fact sheet. Accessed January 10, 2014
  53. Parks, L. (2005). Cultures in orbit: Satellites and the televisual. Durham: Duke University Press.Google Scholar
  54. Pardini, C., & Anselmo, L. (2009). Assessment of the consequences of the Fengyun-1C breakup in Low Earth Orbit. Advances in Space Research, 44, 545–557.CrossRefGoogle Scholar
  55. Pardini, C., & Anselmo, L. (2011). Fengyun 1C diagram physical properties and long-term evolution of the debris clouds produced by two catastrophic collisions in Earth orbit. Advances in Space Research, 48(3), 557–569.CrossRefGoogle Scholar
  56. Phillips, J. (2006). Agencement/assemblage. Theory, Culture and Society, 23(2–3), 108–109.CrossRefGoogle Scholar
  57. Plumwood, V. (1996). Androcentrism and anthrocentrism: Parallels and politics. Ethics and the Environment, 1996, 119–152.Google Scholar
  58. Prigogine, I., & Stengers, I. (1984). Order out of chaos. Man’s new dialogue with nature. Toronto: Bantam Books.Google Scholar
  59. Salmon, M. (1978). What can systems theory do for archaeology? American Antiquity, 43(2), 174–183.CrossRefGoogle Scholar
  60. Sandberg, A. (1999). The physics of information processing superobjects: Daily life among the Jupiter brains. Journal of Evolution and Technology, 5(1), 1–34.Google Scholar
  61. Schiffer, M. B. (2013). The archaeology of science. Studying the creation of useful knowledge. Heidelberg: Springer.Google Scholar
  62. Spennemann, D. H. R. (2007). Of great apes and robots: Considering the future(s) of cultural heritage. Futures, 39, 861–877.CrossRefGoogle Scholar
  63. Venn, C. (2006). A note on assemblage. Theory, Culture and Society, 23(203), 107–108.CrossRefGoogle Scholar
  64. Zak, A. (2013). Raduga 1. Accessed August 18, 2013.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Flinders UniversityAdelaideAustralia

Personalised recommendations