Advertisement

Exploring Similarity

Improving Product Search with Parallel Coordinates
  • Mandy Keck
  • Martin Herrmann
  • Andreas Both
  • Dana Henkens
  • Rainer Groh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8522)

Abstract

Faceted browsing is an established and well-known paradigm for product search. However, if the user is unfamiliar with the topic and the provided facets, he may not be able to sufficiently reduce the amount of results. In order to increase the understanding of the bidirectional relation between facets and result set, we present an interface concept that allows manifold approaches for product search, analysis and comparison starting with a single product or a summarizing visualization of the entire data set. Moreover, various product features can be analyzed in order to support decision-making. Even without detailed knowledge of a specific topic, the user is able to estimate the range and distribution of characteristics in relation to known or desired features. Conventional list-based search forms do not provide such a quick overview. Our concept is based on two visualization techniques that allow the representation of multi-dimensional data across a set of parallel axes: parallel coordinates and parallel sets.

Keywords

Visual Search Interfaces Information Visualization Parallel Coordinates Motive-based Search Big Data E-commerce 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Keck, M., Herrmann, M., Both, A., Gaertner, R., Groh, R.: Improving Motive-Based Search. In: Streitz, N., Stephanidis, C. (eds.) DAPI 2013. LNCS, vol. 8028, pp. 439–448. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Ranganathan, S.R.: Elements of Library Classification. Asian Publishing House, Bombay (1962)Google Scholar
  3. 3.
    Hearst, M.: Design recommendations for hierarchical faceted search interfaces. In: ACM SIGIR Workshop on Faceted Search (2006)Google Scholar
  4. 4.
    Polowinski, J.: Widgets for Faceted Browsing. In: Smith, M.J., Salvendy, G. (eds.) HCI International 2009, Part I. LNCS, vol. 5617, pp. 601–610. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Inselberg, A., Dimsdale, B.: Parallel coordinates: A tool for visualizing multi-dimensional geometry. In: Proc. of IEEE Visualization, pp. 361–378 (1990)Google Scholar
  6. 6.
    Graham, M., Kennedy, J.: Using curves to enhance parallel coordinate visualizations. In: Proc. of the Seventh International Conference on Information Visualization, pp. 10–16 (2003)Google Scholar
  7. 7.
    Riehmann, P., Opolka, J., Froehlich, B.: The Product Explorer: Decision Making with Ease. In: Proceedings of the International Working Conference on Advanced Visual Interfaces (AVI), Capri, Italia, pp. 423–432 (2012)Google Scholar
  8. 8.
    Stefaner, M., Müller, B.: Elastic lists for facet browsers. In: 18th International Conference on Database and Expert Systems Applications (DEXA 2007), pp. 217–221. Regensburg (2007)Google Scholar
  9. 9.
    Ware, C.: Information Visualization. Perception for Design. Elsevier Ltd., Oxford (2004)Google Scholar
  10. 10.
    Bendix, F., Kosara, R., Hauser, H.: Parallel Sets: Interactive Exploration and Visual Analysis of Categorical Data. Transactions on Visualisation and Computer Graphics 1 (2006)Google Scholar
  11. 11.
    Teoh, S., Ma, K.: PaintingClass: Interactive construction, visualization and exploration of decision trees. In: Proceedings Knowledge Discovery and Data Mining. ACM Press (2003)Google Scholar
  12. 12.
    Rosario, G.E., Rundensteiner, E.A., Brown, D.C., Ward, M.O., Huang, S.: Mapping nominal values to numbers for effective visualization. In: Proceedings IEEE Information Visualization, pp. 80–95. IEEE CS Press (2003)Google Scholar
  13. 13.
    Heinrich, J., Luo, Y., Kirkpatrick, A.E., Zhang, H., Weiskopf, D.: Evaluation of a Bundling Technique for Parallel Coordinates. In: GRAPP/IVAPP 2012, pp. 594–602 (2011)Google Scholar
  14. 14.
    Graham, M., Kennedy, J.: Using Curves to Enhance Parallel Coordinate Visualizations. In: Proceedings of the Seventh International Conference on Information Visualization, IV (2003)Google Scholar
  15. 15.
    Artero, A.O., Oliveira, M.C.F., Levkowitz, H.: Uncovering Clusters in Crowded Parallel Coordinates Visualizations, Information Visualization. In: IEEE Symposium on INFOVIS 2004 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mandy Keck
    • 1
  • Martin Herrmann
    • 1
  • Andreas Both
    • 2
  • Dana Henkens
    • 3
  • Rainer Groh
    • 1
  1. 1.Technische Universität DresdenDresdenGermany
  2. 2.Unister GmbHLeipzigGermany
  3. 3.queo GmbHDresdenGermany

Personalised recommendations