A Semantic Recommender System for Learning Based on Encyclopedia of Digital Publication

  • Mao Ye
  • Lifeng Jin
  • Zhi Tang
  • Jianbo Xu
Part of the Communications in Computer and Information Science book series (CCIS, volume 435)


Digital publication is a useful and authoritative resource for knowledge and learning. How to use the knowledge in digital publication resources so as to enhance learning is an interesting and important task. Most of the recommender systems use users’ preferences or history data for computation, which cannot solve the problems such as cold start, scarcity of history data or preferences data. A semantic recommender system is presented in this paper based on encyclopedic knowledge from digital publication resources, without considering history data or preferences data for learning the knowledge of a specific domain. Semantic relatedness is computed between concepts from the encyclopedia. The related concepts are recommended to users when one concept is reviewed. The method shows potential usability for domain-specific knowledge service.


recommender system digital publication semantic relatedness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Manouselis, N., Drachsler, H., Verbert, K., Duval, E.: Recommender Systems for Learning, pp. 1–20. Springer, Heidelberg (2013)Google Scholar
  2. 2.
    Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M., Drachsler, H., Bosnic, I., Duval, E.: Context-aware Recommender Systems for Learning: ASurvey and Future Challenges. IEEE Transactions on Learning Technologies 5(4), 318–335 (2012)CrossRefGoogle Scholar
  3. 3.
    Bobadilla, J., Ortega, F., Hernando, A., Gutierrez, A.: Recommender Systems Survey. Knowledge-Based Systems 46, 109–132 (2013)CrossRefGoogle Scholar
  4. 4.
    Carrer-Neto, W., Hernandez-Alcaraz, M.L., Valencia-Garcia, R., Garcia-Sanchez, F.: Social Knowledge-based Recommender System, Application to the Movies Domain. Expert Systems with Applications 39(12), 10990–11000 (2012)CrossRefGoogle Scholar
  5. 5.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Zouaq, A., Nkambou, R.: Evaluating the Generation of Domain Ontologies in the Knowledge Puzzle Project. IEEE Transactions on Knowledge and Data Engineering 21(11), 1559–1572 (2009)CrossRefGoogle Scholar
  7. 7.
    Ameen, A., Khan, K.U.R., Rani, B.P.: Creation of Ontology in Education Domain. In: 4th International Conference on Technology for Education, pp. 237–238. IEEE Press, New York (2012)Google Scholar
  8. 8.
    Gaeta, M., Orciuoli, F., Paolozzi, S., Salerno, S.: Ontology Extraction for Knowledge Reuse: the e-Learning Perspective. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 41(4), 798–809 (2011)CrossRefGoogle Scholar
  9. 9.
    Encyclopedia of China, Chinese History I, II, III,
  10. 10.
    Budanitsky, A., Hirst, G.: Semantic Distance in WordNet: An Experimental, Application-oriented Evaluation of Five Measures. In: Workshop on WordNet and Other Lexical Resources, Second Meeting of the North American Chapter of the Association for Computational Linguistics, Pittsburgh, USA (2001)Google Scholar
  11. 11.
    Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis. In: 20th International Joint Conference on Artificial Intelligence, pp. 1606–1611. Morgan Kaufmann Publishers Inc., San Francisco (2007)Google Scholar
  12. 12.
    Strube, M., Ponzetto, S.P.: WikiRelate! Computing Semantic Relatedness Using Wikipedia. In: 21st National Conference on Artificial Intelligence, vol. 2, pp. 1419–1424. AAAI Press (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mao Ye
    • 1
    • 2
    • 3
  • Lifeng Jin
    • 2
  • Zhi Tang
    • 1
    • 2
  • Jianbo Xu
    • 2
  1. 1.Peking UniversityBeijingChina
  2. 2.State Key Laboratory of Digital Publishing Technology (Peking University Founder Group Co. LTD.)BeijingChina
  3. 3.Postdoctoral Workstation of the Zhongguancun Haidian Science ParkBeijingChina

Personalised recommendations