Advertisement

Frequent Pattern Mining Algorithms: A Survey

  • Charu C. AggarwalEmail author
  • Mansurul A. Bhuiyan
  • Mohammad Al Hasan
Chapter

Abstract

This chapter will provide a detailed survey of frequent pattern mining algorithms. A wide variety of algorithms will be covered starting from Apriori. Many algorithms such as Eclat, TreeProjection, and FP-growth will be discussed. In addition a discussion of several maximal and closed frequent pattern mining algorithms will be provided. Thus, this chapter will provide one of most detailed surveys of frequent pattern mining algorithms available in the literature.

Keywords

Frequent pattern mining algorithms Apriori TreeProjection FP-growth 

References

  1. 1.
    R. Agrawal, and R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases, VLDB Conference, pp. 487–499, 1994.Google Scholar
  2. 2.
    R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. ACM SIGMOD Conference, 1993.Google Scholar
  3. 3.
    R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery of association rules, Advances in Knowledge Discovery and Data Mining, pp. 307–328, 1996.Google Scholar
  4. 4.
    R. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth-first Generation of Long Patterns, ACM KDD Conference, 2000. Also available as IBM Research Report, RC21538, July 1999.Google Scholar
  5. 5.
    R. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A Tree Projection Algorithm for Generation of Frequent Itemsets, Journal of Parallel and Distributed Computing, 61(3), pp. 350–371, 2001. Also available as IBM Research Report, RC21341, 1999.Google Scholar
  6. 6.
    C. C. Aggarwal, P. S. Yu. Online Generation of Association Rules, ICDE Conference, 1998.Google Scholar
  7. 7.
    C. C. Aggarwal, P. S. Yu. A New Framework for Itemset Generation, ACM PODS Conference, 1998.Google Scholar
  8. 8.
    E. Azkural and C. Aykanat. A Space Optimization for FP-Growth, FIMI workshop, 2004.Google Scholar
  9. 9.
    Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining Frequent Patterns with Counting Inference. ACM SIGKDD Explorations Newsletter, 2(2), pp. 66–75, 2000.CrossRefGoogle Scholar
  10. 10.
    R. J. Bayardo Jr. Efficiently mining long patterns from databases, ACM SIGMOD Conference, 1998.Google Scholar
  11. 11.
    J. Blanchard, F. Guillet, R. Gras, and H. Briand. Using Information-theoretic Measures to Assess Association Rule Interestingness. ICDM Conference, 2005.Google Scholar
  12. 12.
    C. Borgelt, R. Kruse. Induction of Association Rules: Apriori Implementation, Conference on Computational Statistics, 2002. URLGoogle Scholar
  13. 13.
    J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: A Condensed Representation of Boolean data for the Approximation of Frequency Queries. Data Mining and Knowledge Discovery, 7(1), pp. 5–22, 2003.CrossRefMathSciNetGoogle Scholar
  14. 14.
    D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases, ICDE Conference, 2000. Implementation URL: URLGoogle Scholar
  15. 15.
    S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data. ACM SIGMOD Conference, 1997.Google Scholar
  16. 16.
    S. Brin, R. Motwani, and C. Silverstein. Beyond Market Baskets: Generalizing Association Rules to Correlations. ACM SIGMOD Conference, 1997.Google Scholar
  17. 17.
    T. Calders, and B. Goethals. Mining all non-derivable frequent itemsets Principles of Data Mining and Knowledge Discovery, pp. 1–42, 2002.Google Scholar
  18. 18.
    T. Calders, and B. Goethals. Depth-first Non-derivable Itemset Mining, SDM Conference, 2005.Google Scholar
  19. 19.
    T. Calders, N. Dexters, J. Gillis, and B. Goethals. Mining Frequent Itemsets in a Stream, Informations Systems, to appear, 2013.Google Scholar
  20. 20.
    J. H. Chang, and W. S. Lee. Finding Recent Frequent Itemsets Adaptively over Online Data Streams, ACM KDD Conference, 2003.Google Scholar
  21. 21.
    M. Charikar, K. Chen, and M. Farach-Colton. Finding Frequent Items in Data Streams. Automata, Languages and Programming, pp. 693–703, 2002.Google Scholar
  22. 22.
    G. Cong, A. K. H. Tung, X. Xu, F. Pan, and J. Yang. FARMER: Finding interesting rule groups in microarray datasets. ACM SIGMOD Conference, 2004.Google Scholar
  23. 23.
    G. Cong, K.-L. Tan, A. K. H. Tung, X. Xu. Mining Top-k covering Rule Groups for Gene Expression Data. ACM SIGMOD Conference, 2005.Google Scholar
  24. 24.
    M. El-Hajj and O. Zaiane. COFI-tree Mining: A New Approach to Pattern Growth with Reduced Candidacy Generation. FIMI Workshop, 2003.Google Scholar
  25. 25.
    F. Geerts, B. Goethals, J. Bussche. A Tight Upper Bound on the Number of Candidate Patterns, ICDM Conference, 2001.Google Scholar
  26. 26.
    B. Goethals. Survey on frequent pattern mining, Technical report, University of Helsinki, 2003.Google Scholar
  27. 27.
    R. P. Gopalan and Y. G. Sucahyo. High Performance Frequent Pattern Extraction using Compressed FP-Trees, Proceedings of SIAM International Workshop on High Performance and Distributed Mining, 2004.Google Scholar
  28. 28.
    K. Gouda, and M. Zaki. Genmax: An efficient algorithm for mining maximal frequent itemsets. Data Mining and Knowledge Discovery, 11(3), pp. 223–242, 2005.CrossRefMathSciNetGoogle Scholar
  29. 29.
    G. Grahne, and J. Zhu. Efficiently Using Prefix-trees in Mining Frequent Itemsets, IEEE ICDM Workshop on Frequent Itemset Mining, 2004.Google Scholar
  30. 30.
    G. Grahne, and J. Zhu. Fast Algorithms for Frequent Itemset Mining Using FP-Trees. IEEE Transactions on Knowledge and Data Engineering. 17(10), pp. 1347–1362, 2005, vol. 17, no. 10, pp. 1347–1362, October, 2005.CrossRefGoogle Scholar
  31. 31.
    V. Guralnik, and G. Karypis. Parallel tree-projection-based sequence mining algorithms. Parallel Computing, 30(4): pp. 443–472, April 2004.CrossRefGoogle Scholar
  32. 32.
    J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation, ACM SIGMOD Conference, 2000.Google Scholar
  33. 33.
    J. Han, H. Cheng, D. Xin, and X. Yan. Frequent Pattern Mining: Current Status and Future Directions, Data Mining and Knowledge Discovery, 15(1), pp. 55–86, 2007.CrossRefMathSciNetGoogle Scholar
  34. 34.
    C. Hidber. Online Association Rule Mining, ACM SIGMOD Conference, 1999.Google Scholar
  35. 35.
    R. Jin, and G. Agrawal. An Algorithm for in-core Frequent Itemset Mining on Streaming Data, ICDM Conference, 2005.Google Scholar
  36. 36.
    Q. Lan, D. Zhang, and B. Wu. A New Algorithm For Frequent Itemsets Mining Based On Apriori And FP-Tree, IEEE International Conference on Global Congress on Intelligent Systems, pp. 360–364, 2009.Google Scholar
  37. 37.
    D.-I. Lin, and Z. Kedem. Pincer-search: A New Algorithm for Discovering the Maximum Frequent Set, EDBT Conference, 1998.Google Scholar
  38. 38.
    J. Liu, Y. Pan, K. Wang. Mining Frequent Item Sets by Opportunistic Projection, ACM KDD Conference, 2002.Google Scholar
  39. 39.
    G. Liu, H. Lu and J. X. Yu. AFOPT:An Efficient Implementation of Pattern Growth Approach, FIMI Workshop, 2003.Google Scholar
  40. 40.
    H. Liu, J. Han, D. Xin, and Z. Shao. Mining frequent patterns on very high dimensional data: a top- down row enumeration approach. SDM Conference, 2006.Google Scholar
  41. 41.
    C. Lucchesse, S. Orlando, and R. Perego. DCI-Closed: A fast and memory efficient algorithm to mine frequent closed itemsets. FIMI Workshop, 2004.Google Scholar
  42. 42.
    C. Lucchese, S. Orlando, and R. Perego. Fast and memory efficient mining of frequent closed itemsets. IEEE TKDE Journal, 18(1), pp. 21–36, January 2006.Google Scholar
  43. 43.
    G. Manku, R. Motwani. Approximate Frequency Counts over Data Streams. VLDB Conference, 2002.Google Scholar
  44. 44.
    H. Mannila, H. Toivonen, and A.I. Verkamo. Efficient algorithms for discovering association rules. Proceedings of the AAAI Workshop on Knowledge Discovery in Databases, pp. 181–192, 1994.Google Scholar
  45. 45.
    B. Negrevergne, T. Guns, A. Dries, and S. Nijssen. Dominance Programming for Itemset Mining. IEEE ICDM Conference, 2013.Google Scholar
  46. 46.
    S. Orlando, P. Palmerini, R. Perego. Enhancing the a-priori algorithm for frequent set counting, Third International Conference on Data Warehousing and Knowledge Discovery, 2001.Google Scholar
  47. 47.
    S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and resource-aware mining of frequent sets. ICDM Conference, 2002.Google Scholar
  48. 48.
    F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. J. Zaki. Finding closed patterns in long biological datasets. ACM KDD Conference, 2003.Google Scholar
  49. 49.
    F Pan, A. K. H. Tung, G. Cong, X. Xu. COBBLER: Combining column and Row Enumeration for Closed Pattern Discovery. SSDBM, 2004.Google Scholar
  50. 50.
    J.-S. Park, M. S. Chen, and P. S. Yu. An Effective Hash-based Algorithm for Mining Association Rules, ACM SIGMOD Conference, 1995.Google Scholar
  51. 51.
    N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. ICDT Conference, 1999.Google Scholar
  52. 52.
    N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association rules using closed itemset lattices. Journal of Information Systems, 24(1), pp. 25–46, 1999.CrossRefGoogle Scholar
  53. 53.
    J. Pei, J. Han, and R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets, DMKD Workshop, 2000.Google Scholar
  54. 54.
    J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, D. Yang. H-mine: Hyper-structure mining of frequent patterns in large databases, ICDM Conference, 2001.Google Scholar
  55. 55.
    B. Racz. nonordfp: An FP-Growth Variation without Rebuilding the FP-Tree, FIMI Workshop, 2004.Google Scholar
  56. 56.
    M. Holsheimer, M. Kersten, H. Mannila, and H. Toivonen. A Perspective on Databases and Data Mining, ACM KDD Conference, 1995.Google Scholar
  57. 57.
    A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB Conference, 1995.Google Scholar
  58. 58.
    P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, D. Shah. Turbo-charging Vertical Mining of Large Databases. ACM SIGMOD Conference, pp. 22–33, 2000.Google Scholar
  59. 59.
    Z. Shi, and Q. He. Efficiently Mining Frequent Itemsets with Compact FP-Tree, IFIP International Federation for Information Processing, V-163, pp. 397–406, 2005.Google Scholar
  60. 60.
    R. Srikant. Fast algorithms for mining association rules and sequential patterns. PhD thesis, University of Wisconsin, Madison, 1996.Google Scholar
  61. 61.
    Y. G. Sucahyo and R. P. Gopalan. CT-ITL: Efficient Frequent Item Set Mining Using a Compressed Prefix Tree with PatternGrowth, Proceedings of the 14th Australasian Database Conference, 2003.Google Scholar
  62. 62.
    Y. G. Sucahyo and R. P. Gopalan. CT-PRO: A Bottom Up Non Recursive Frequent Itemset Mining Algorithm Using Compressed FP-Tree Data Structures. FIMI Workshop, 2004.Google Scholar
  63. 63.
    P.-N. Tan, V. Kumar, amd J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. ACM KDD Conference, 2002.Google Scholar
  64. 64.
    I. Taouil, N. Pasquier, Y. Bastide, and L. Lakhal. Mining Basis for Association Rules using Closed Sets, ICDE Conference, 2000.Google Scholar
  65. 65.
    H. Toivonen. Sampling large databases for association rules. VLDB Conference, 1996.Google Scholar
  66. 66.
    T. Uno, M. Kiyomi and H. Arimura. Efficient Mining Algorithms for Frequent/Closed/Maximal Itemsets, FIMI Workshop, 2004.Google Scholar
  67. 67.
    J. Wang, J. Han. BIDE: Efficient Mining of Frequent Closed Sequences. ICDE Conference, 2004.Google Scholar
  68. 68.
    J. Wang, J. Han, Y. Lu, and P. Tzvetkov. TFP: An efficient algorithm for mining top-k frequent closed itemsets. IEEE Transactions on Knowledge and Data Engineering, 17, pp. 652–664, 2002.CrossRefGoogle Scholar
  69. 69.
    J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the Best strategies for mining frequent closed itemsets. ACM KDD Conference, 2003.Google Scholar
  70. 70.
    G. I. Webb. Efficient Search for Association Rules, ACM KDD Conference, 2000.Google Scholar
  71. 71.
    M. J. Zaki. Scalable algorithms for association mining, IEEE Transactions on Knowledge and Data Engineering, 12(3), pp. 372–390, 2000.CrossRefMathSciNetGoogle Scholar
  72. 72.
    M. Zaki, and K. Gouda. Fast vertical mining using diffsets. ACM KDD Conference, 2003.Google Scholar
  73. 73.
    M. J. Zaki and C. Hsiao. CHARM: An efficient algorithm for closed association rule mining. SDM Conference, 2002.Google Scholar
  74. 74.
    M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New Algorithms for Fast Discovery of Association Rules. KDD Conference, pp. 283–286, 1997.Google Scholar
  75. 75.
    C. Zeng, J. F. Naughton, and JY Cai. On Differentially Private Frequent Itemset Mining. In Proceedings of 39th International Conference on Very Large data Bases, 2012.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Charu C. Aggarwal
    • 1
    Email author
  • Mansurul A. Bhuiyan
    • 2
  • Mohammad Al Hasan
    • 2
  1. 1.IBM T. J.Watson Research CenterYorktown HeightsUSA
  2. 2.Indiana University–Purdue UniversityIndianapolisUSA

Personalised recommendations