A Gesture-Based Door Control Using Capacitive Sensors

  • Steeven Zeiß
  • Alexander Marinc
  • Andreas Braun
  • Tobias Große-Puppendahl
  • Sebastian Beck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8530)

Abstract

In public places sanitary conditions are always of concern, particularly of surfaces that are touched by a multitude of persons, such as door handles in rest rooms. Similar issues also arise in medical facilities. Doors that open based on presence are common in environments such as shopping malls; however they are not suited for sensitive areas, such as toilet stalls. Capacitive proximity sensors detect the presence of the human body over a distance and can be unobtrusively applied in order to enable hidden gesture-based interfaces that work without touch. In this paper we present a concept for a gesture controlled automated door based on this sensor technology. We introduce the underlying technology and present the concept and electronic components used in detail. Novel interaction patterns and data processing methods allow to open, close, lock and unlock the door using simple gestures. A prototype device has been created and evaluated in a user study.

Keywords

Ambient Assisted Living (AAL) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barker, J., Vipond, I.B., Bloomfield, S.F.: Effects of cleaning and disinfection in reducing the spread of Norovirus contamination via environmental surfaces. J. Hosp. Infect. 58, 42–49 (2004)CrossRefGoogle Scholar
  2. 2.
    Glinsky, A.: Theremin: Ether music and espionage. University of Illinois Press (2000)Google Scholar
  3. 3.
    Wimmer, R., Holleis, P., Kranz, M., Schmidt, A.: Thracker - Using Capacitive Sensing for Gesture Recognition. In: 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW 2006), pp. 64–64. IEEE (2006)Google Scholar
  4. 4.
    Zimmerman, T.G., Smith, J.R., Paradiso, J.A., Allport, D., Gershenfeld, N.: Applying electric field sensing to human-computer interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI 1995, pp. 280–287. ACM Press, New York (1995)Google Scholar
  5. 5.
    Braun, A., Hamisu, P.: Using the human body field as a medium for natural interaction. In: Proceedings of the 2nd International Conference on PErvsive Technologies Related to Assistive Environments - PETRA 2009, pp. 1–7. ACM Press, New York (2009)Google Scholar
  6. 6.
    Grosse-Puppendahl, T., Braun, A.: Honeyfish - A high resolution gesture recognition system based on capacitive proximity sensing. In: Embedded World Conference 2012, p. 10. WEKA Fachmedien, Haar (Design & Elektronik) (2012)Google Scholar
  7. 7.
    Baxter, L.K.: Capacitive Sensors. Sensors Peterbrgh, 1–17 (1996)Google Scholar
  8. 8.
    Smith, J.R.: Electric field imaging (1999)Google Scholar
  9. 9.
    Smith, J., White, T., Dodge, C., Paradiso, J., Gershenfeld, N., Allport, D.: Electric field sensing for graphical interfaces. IEEE Comput. Graph. Appl. 18, 54–60 (1998)CrossRefGoogle Scholar
  10. 10.
    Schnabel, P.: Elektronik-Fibel. Elektron. Bauelemente, Schaltungstechnik, Digit 4 (2007)Google Scholar
  11. 11.
    Grosse-Puppendahl, T., Berghoefer, Y., Braun, A., Wimmer, R., Kuijper, A.: OpenCapSense: A Rapid Prototyping Toolkit for Pervasive Interaction Using Capacitive Sensing. In: IEEE Int. Conf. Pervasive Comput. Commun., vol. 18, p. 22 (2013)Google Scholar
  12. 12.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Steeven Zeiß
    • 1
  • Alexander Marinc
    • 1
  • Andreas Braun
    • 1
  • Tobias Große-Puppendahl
    • 1
  • Sebastian Beck
    • 1
  1. 1.Fraunhofer-Institut für Graphische Datenverarbeitung IGDDarmstadt

Personalised recommendations