To address the problem for accuracy evaluation, we propose a systematic method. With MSE, a parameter to measure the accuracy in statistics, we design the accuracy evaluation framework for multi-modal data. Within this framework, we classify data types into three categories and develop accuracy evaluation algorithms for each category in cases of in presence and absence of true values. Extensive experimental results show the efficiency and effectiveness of our proposed framework and algorithms.


data quality accuracy sensed data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, D.J., Madden, S., Lindner, W.: Reed: Robust, efficient filtering and event detection in sensor networks. In: VLDB (2005)Google Scholar
  2. 2.
    Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)CrossRefGoogle Scholar
  3. 3.
    Florescu, D., Koller, D., Levy, A.Y.: Using probabilistic information in data integration. In: VLDB, pp. 216–225 (1997)Google Scholar
  4. 4.
    Getoor, L., Machanavajjhala, A.: Entity resolution: Theory, practice & open challenges. PVLDB 5(12), 2018–2019 (2012)Google Scholar
  5. 5.
    Kozlov, M.K., Tarasov, S.P., Khachiyan, L.G.: Polynomial solvability of convex quadratic programming. Doklady Akademii Nauk SSSR 248Google Scholar
  6. 6.
    Lehmann, E.L., Casella, G.: Theory of Point Estimation, 2nd edn. Springer, New York (1998)zbMATHGoogle Scholar
  7. 7.
    Li, J., Cheng, S. (ε, δ)-approximate aggregation algorithms in dynamic sensor networks. IEEE Transactions on Parallel and Distributed Systems 23(3), 385–396 (2012)CrossRefGoogle Scholar
  8. 8.
    Li, J., Cheng, S., Gao, H., Cai, Z.: Approximate physical world reconstruction algorithms in sensor networks. IEEE Transactions on Parallel and Distributed SystemsGoogle Scholar
  9. 9.
    Li, M., Liu, Y., Chen, L.: Non-threshold based event detection for 3d environment monitoring in sensor networks. In: ICDCS, p. 9 (2007)Google Scholar
  10. 10.
    Liu, K., Li, M., Liu, Y., Li, X.Y., Li, M., Ma, H.: Exploring the hidden connectivity in urban vehicular networks. In: ICNP, pp. 243–252 (2010)Google Scholar
  11. 11.
    Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  12. 12.
    Kumar, S.: Sensit, D.: Ensor information technology for the warfighter. In: Proceedings of the 4th International Conference on Information Fusion, pp. 3–9 (2001)Google Scholar
  13. 13.
    Zhao, B., Rubinstein, B.I.P., Gemmell, J., Han, J.: A bayesian approach to discovering truth from conflicting sources for data integration. PVLDB 5(6), 550–561 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yan Zhang
    • 1
  • Hongzhi Wang
    • 1
  1. 1.Harbin Institute of TechnologyChina

Personalised recommendations