MIMO-Aware Spectrum Access and Scheduling in Multi-hop Multi-channel Wireless Networks

  • Lin Luo
  • Dengyuan Wu
  • Hang Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8491)


Software defined radios (SDRs) are a promising technology to enable dynamic channel access and sharing. Multiple Input Multiple Output (MIMO) is another radio technology breakthrough for increasing wireless throughput. To obtain the full benefits brought by SDR and MIMO technologies in wireless mesh networks (WMNs), the higher layer mechanisms should exploit their capabilities in a systematic way. In this paper, we propose a Stream Controlled Multiple Access (SCMA) scheme for multi-hop multi-channel WMNs, which is responsible for scheduling links and assigning channels for data transmission and controlling MIMO operation mode in a cross-layer approach. It enables efficient spectrum access and sharing in temporal, frequency, and spatial dimensions, and adapts to varying network conditions. The evaluation results show that the proposed SCMA scheme greatly improve the network performance compared to the traditional schemes.


software-defined radio MIMO multi-channel wireless mesh networks scheduling multiple access 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gupta, P., Kumar, P.R.: The Capacity of Wireless Networks. IEEE Transactions on Information Theory, IT 46(2), 388–404 (2000)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Raniwala, A., Chiuh, T.: Architecture and Algorithms for an IEEE 802.11-based Multi-Channel Wireless Mesh Networks. In: IEEE Infocom 2005, Miami (2005)Google Scholar
  3. 3.
    Alicherry, M.R., Bhatia, R., Li, L.: Joint Channel Assignment and Routing for Throughput Optimization in Multi-radio Wireless Mesh Networks. In: Proc. ACM MOBICOM (2005)Google Scholar
  4. 4.
    Biglieri, E., Calderbank, R., Constantinides, A., Goldsmith, A., Paulraj, A., Poor, H.V.: MIMO Wireless Communications. Cambridge University Press (2007)Google Scholar
  5. 5.
    Spencer, Q., Swindlehurst, A., Haardt, M.: Zero-forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO Channels. IEEE Trans. Signal Process. 52(2), 461–471 (2004)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Liu, J., Shi, Y., Hou, Y.: A Tractable and Accurate Cross-Layer Model for Multi-Hop MIMO Networks. In: IEEE INFOCOM, New York (2010)Google Scholar
  7. 7.
    Yazdanpanah, M., Assi, C., Shayan, Y.: Cross-Layer Optimization for Wireless Mesh Networks with Smart Antennas. Computer Communications, 1894–1911 (2011)Google Scholar
  8. 8.
    Hamdaoui, B., Shin, K.G.: Maximum Achievable Throughput in Multiband Multi-Antenna Wireless Mesh Networks. IEEE Trans. on Mobile Computing 9(6), 838–849 (2010)CrossRefGoogle Scholar
  9. 9.
    Bansal, M., Trivedi, A.: Cross-Layer Optimization of Multichannel Multiantenna WMNs. Wireless Pers. Commun. 71, 1443–1459 (2013)CrossRefGoogle Scholar
  10. 10.
    Belding-Royer, E., Perkins, C., Das, S.: Ad Hoc On-Demand Distance Vector (AODV) Routing. In: RFC 3561, Internet Engineering Task Force (2003)Google Scholar
  11. 11.
    IEEE 802.11s Working Group: Mesh Networking. In: IEEE 802.11s Standard (2009)Google Scholar
  12. 12.
    Gollakota, S., Perli, S.D., Katabi, D.: Interference Alignment and Cancellation. In: Proc. ACM SIGCOMM (2009)Google Scholar
  13. 13.
    Stolyar, A.: Maximizing Queueing Network Utility Subject to Stability: Greedy Primal-Dual Algorithm. Queueing Systems 50(4), 401–457 (2005)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lin Luo
    • 1
  • Dengyuan Wu
    • 2
  • Hang Liu
    • 3
  1. 1.Marvell, Inc.San JoseUSA
  2. 2.Department of Computer ScienceThe George Washington UniversityWashington, DCUSA
  3. 3.Department of Electrical Engineering and Computer ScienceThe Catholic University of AmericaWashington, DCUSA

Personalised recommendations