Sub-nanosecond Heat Assisted Magnetic Recording of FePt Media

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 159)


Chemically ordered and textured L10 FePtX-Y (001) granular media with high perpendicular anisotropy are being developed for future high areal density heat-assisted magnetic recording (HAMR) applications. Proper heat sink layers optimize the recording time window down to 0.1–0.2 ns and achievable areal densities beyond1 Tb/in2.


Areal Density Heat Assist Magnetic Record Near Field Transducer Efficient Optical Energy Hard Disk Drive System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording” Proc. IEEE vol 96, 1810 (2008).Google Scholar
  2. 2.
    A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. KC Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage,” HAMR Areal Density Demonstration of 1 + Tbpsi on Spinstand” IEEE Trans Mag. 49, 779 (2013).Google Scholar
  3. 3.
    X. Wang, K. Gao, H. Zhou, A. Itagi, M. Seigler, E. Gage, “HAMR Recording Limitations and Extendibility” IEEE Trans Mag. 49, 686 (2013).Google Scholar
  4. 4.
    W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, XM. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer” Nat. Photonics 3, 220 (2009).Google Scholar
  5. 5.
    R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, Lei Li, Bin Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and XM Yang “Heat-Assisted Magnetic Recording” IEEE Trans. Mag. 42, 2417 (2006).Google Scholar
  6. 6.
    D. Weller and T. McDaniel ““Media for extremely high density recording” Advanced Magnetic. Nanostructures, eds D. Sellmyer and R. Skomski, Springer 2007, Chapter 11.Google Scholar
  7. 7.
    O. Mosendz, S. Pisana, J. W. Reiner, B. Stipe, and D. Weller, “Ultra-high coercivity small-grain FePt media for thermally assisted recording” J. Appl. Phys. 111, 07B729 (2012).Google Scholar
  8. 8.
    B.S.D.Ch.S.Varaprasad, M. Chen, Y.K. Takahashi and K. Hono, “L10 ordered FePt based perpendicular recording media for heat assisted magnetic recording”, IEEE Trans Mag, 49, 718 (2013).Google Scholar
  9. 9.
    S. Pisana, O. Mosendz, G.J. Parker, J.W. Reiner, T.S. Santos, A.T. McCallum, H.J. Richter, D.Weller, “Effects of grain microstructure on magnetic properties in FePtAg-C media for temperature assisted recording”, J. Appl. Phys. 113, 043910 (2013).Google Scholar
  10. 10.
    D. Weller, O. Mosendz, G. Parker, S. Pisana and T. S. Santos, “L10 FePtX-Y media for heat assisted magnetic recording” Phys. Status Solidi A, 210, 1245 (2013).Google Scholar
  11. 11.
    D. Weller, G. Parker, O. Mosendz, E. Champion, B. Stipe, X. Wang, T. Klemmer, G. Ju, A. Ajan, “The HAMR Media Technology Roadmap to an Areal Density of 4 Tb/in2” (submitted for publication).Google Scholar
  12. 12.
    J.-G. Zhu and Y. Wang, “Microwave Assisted Magnetic Recording Utilizing Perpendicular Spin Torque Oscillator With Switchable Perpendicular Electrodes” IEEE Trans. Mag. 46, 751 (2010).Google Scholar
  13. 13.
    J.-G. Zhu, M. Mallary, S. Hinata, S. Saito, M. Takahashi, “Ferromagnetic resonance analysis of internal effective field of classified grains by switching field for granular perpendicular recording media”, J. Appl. Phys. 111, 07B722 (2012).Google Scholar
  14. 14.
    H.J. Richter, A.Y. Dobin, R.T. Lynch, D .Weller “Recording potential of bit-patterned media” Appl Phys Lett 88, 222512, 119, (2006).Google Scholar
  15. 15.
    T. R. Albrecht, D. Bedau, E. Dobisz, He Gao, M. Grobis, O. Hellwig, D. Kercher, J. Lille, E. Marinero, K. Patel, R. Ruiz, M. E. Schabes, L. Wan, D. Weller and Tsai Wei-Wu, “Bit Patterned Media at 1 Tdot/in2 and Beyond” IEEE Trans Mag, 49, 773 (2013).Google Scholar
  16. 16.
    R. Wood, M. Williams, A. Kavcic and J. Miles “The Feasibility of Magnetic Recording at 10 Terabits Per Square Inch on Conventional Media” IEEE Trans. Mag. 45, 917 (2009).Google Scholar
  17. 17.
    Roger Wood, “Future Hard Disk Drive Systems”, J. Magn. Magn. Mater. 321, 555 (2009).Google Scholar
  18. 18.
    B. C. Stipe, T.C. Strand, Chie C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht & B. D. Terris “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna” Nat. Photonics 4, 484 (2010).Google Scholar
  19. 19.
    Lidu Huang, B. Stipe, M. Staffaroni, J.-Y. Juang, T. Hirano, E. Schreck and F.-Y. Huang, “HAMR Thermal Modeling Including Media Hot Spot”, IEEE Trans. Mag. 49, No. 6, June 2013.Google Scholar
  20. 20.
    J.-U. Thiele, K. R. Coffey, M. F. Toney, J. A. Hedstrom, and A. J. Kellock, “Temperature dependent magnetic properties of highly chemically ordered Fe Ni Pt L10 films,” J. Appl. Phys., 91, 6595 (2002).Google Scholar
  21. 21.
    H.J. Richter, C.C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B.C. Stipe, “Direct Measurement of the Thermal Gradient in Heat Assisted Magnetic Recording “, IEEE Trans. Mag. 2013 (accepted for publication).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.HGST a Western Digital CompanySan Jose Research CenterSan JoseUSA

Personalised recommendations