Advertisement

Energy-Utility Analysis for Resilient Systems Using Probabilistic Model Checking

  • Christel Baier
  • Clemens Dubslaff
  • Sascha Klüppelholz
  • Linda Leuschner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8489)

Abstract

The automated quantitative system analysis in terms of probabilistic model checking (PMC) is nowadays well-established and has been applied successfully in various areas. Recently, we showed how PMC can be applied for the trade-off analysis between several cost and reward functions, such as energy and utility. Besides utility, also the resilience of a system, i.e., the systems capability to operate successfully even in unfavorable conditions, crucially depends on costs invested: It is well-known that better resilience can be achieved, e.g., through introducing redundant components, which however may yield higher energy consumption.

In this paper, we focus on the interplay energy, utility and resilience. The formalization of the resulting trade-offs requires several concepts like quantiles, conditional probabilities and expectations and ratios of cost or reward functions. We present an overview how these quantitative measures for resilience mechanisms can be computed when the resilient systems are modeled either as discrete or continuous-time Markov chains. All the presented concepts of multi-objective reasoning are not supported by state-of-the-art probabilistic model checkers yet. By means of a small case study following the modular redundancy principle, we exemplify a resilience analysis within our prototype implementations.

Keywords

Markov Chain Markov Decision Process Reward Function Linear Temporal Logic Software Product Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, V., Chandrasekaran, R., Nair, K.: Markov ratio decision processes. Journal of Optimization Theory and Application 21(1) (1977)Google Scholar
  2. 2.
    Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Andrés, M.E., van Rossum, P.: Conditional probabilities over probabilistic and nondeterministic systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 157–172. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Baier, C., Cloth, L., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Performability assessment by model checking of Markov reward models. Formal Methods in System Design 36(1), 1–36 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quantiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–299. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Baier, C., Daum, M., Engel, B., Härtig, H., Klein, J., Klüppelholz, S., Märcker, S., Tews, H., Völp, M.: Locks: Picking key methods for a scalable quantitative analysis. Journal of Computer and System Sciences (to appear, 2014)Google Scholar
  7. 7.
    Baier, C., Dubslaff, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Probabilistic model checking for energy-utility analysis. In: Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Panangaden Festschrift. LNCS, vol. 8464, pp. 96–123. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Baier, C., Engel, B., Klüppelholz, S., Märcker, S., Tews, H., Völp, M.: A probabilistic quantitative analysis of probabilistic-write/Copy-select. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 307–321. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)Google Scholar
  10. 10.
    Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabilities in markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Weight monitoring with linear temporal logic: Complexity and decidability. In: 29th ACM/IEEE Symposium on Logic in Computer Science, LICS 2014 (2014) (accepted for publication)Google Scholar
  12. 12.
    Bianco, A., de Alfaro, L.: Model checking of probabilistic and non-deterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  13. 13.
    Brázdil, T., Kučera, A., Stražovský, O.: On the Decidability of Temporal Properties of Probabilistic Pushdown Automata. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 145–157. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)Google Scholar
  15. 15.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University, Department of Computer Science (1997)Google Scholar
  17. 17.
    de Alfaro, L.: How to specify and verify the long-run average behavior of probabilistic systems. In: 13th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 454–465. IEEE Computer Society (1998)Google Scholar
  18. 18.
    de Alfaro, L.: Computing minimum and maximum reachability times in probabilistic systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 66–81. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Desharnais, J., Panangaden, P.: Continuous stochastic logic characterizes bisimulation of continuous-time Markov processes. Journal of Logic and Algebraic Programming 56(1-2), 99–115 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Dubslaff, C., Klüppelholz, S., Baier, C.: Probabilistic model checking for energy analysis in software product lines. In: 13th International Conference on Modularity (MODULARITY). ACM Press (to appear, 2014)Google Scholar
  21. 21.
    Gao, Y., Xu, M., Zhan, N., Zhang, L.: Model checking conditional CSL for continuous-time Markov chains. IPL 113(1-2), 44–50 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  23. 23.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6, 512–535 (1994)CrossRefzbMATHGoogle Scholar
  24. 24.
    Haverkort, B.: Performance of Computer Communication Systems: A Model-Based Approach. Wiley (1998)Google Scholar
  25. 25.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Ji, M., Wu, D., Chen, Z.: Verification method of conditional probability based on automaton. Journal of Networks 8(6), 1329–1335 (2013)CrossRefGoogle Scholar
  27. 27.
    Katoen, J.-P., Zapreev, I., Hahn, E., Hermanns, H., Jansen, D.: The ins and outs of the probabilistic model checker MRMC. Performance Evaluation 68(2) (2011)Google Scholar
  28. 28.
    Kulkarni, V.: Modeling and Analysis of Stochastic Systems. Chapman and Hall (1995)Google Scholar
  29. 29.
    Laprie, J.-C.: From dependability to resilience. In: 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks(DSN), Page Fast Abstracts, Abstracts, Anchorage, AK (June 2008)Google Scholar
  30. 30.
    Maruyama, H., Minami, K.: Towards systems resilience. Innovation and Supply Chain Management 7(3) (2013)Google Scholar
  31. 31.
    Panangaden, P.: Measure and probability for concurrency theorists. Theoretical Computer Science 253(2), 287–309 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons (1994)Google Scholar
  33. 33.
    Serfling, R.J.: Approximation Theorems of Mathematical Statistics. John Wiley & Sons (1980)Google Scholar
  34. 34.
    Ummels, M., Baier, C.: Computing quantiles in Markov reward models. In: Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 353–368. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  35. 35.
    Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: 26th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 327–338. IEEE Computer Society (1985)Google Scholar
  36. 36.
    von Essen, C., Jobstmann, B.: Synthesizing systems with optimal average-case behavior for ratio objectives. In: International Workshop on Interactions, Games and Protocols (iWIGP). EPTCS, vol. 50, pp. 17–32 (2011)Google Scholar
  37. 37.
    von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Automata Studies. Annals of Mathematics Studies, vol. 34, pp. 43–98. Princeton University Press, Princeton (1956)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christel Baier
    • 1
  • Clemens Dubslaff
    • 1
  • Sascha Klüppelholz
    • 1
  • Linda Leuschner
    • 1
  1. 1.Institute for Theoretical Computer ScienceTechnische Universität DresdenGermany

Personalised recommendations