Advertisement

Abstract

When we write a SPARQL query, we need to know the structure of the dataset. In the relation databases the tables have a scheme, but the semantic data do not have. Autocompletion function exists in SQL environment, but it does not exist in SPARQL environment. We made a system that can help to write SPARQL query. The system has two features. The first is the prefix recommend. We can write shorter queries if we use prefixes because we do not need to write the long IRIs. The second feature is the predicate-based recommendation based on the type of the variable. If a variable is in the query and it has a type condition, then our system recommends further predicates of this type. Our system needs information about the dataset for the recommendation. We can get these information with simple SPARQL queries. The queries run on a federated system. It is useful because the user does not need any information about the endpoints.

Keywords

SPARQL Semantic Web Linked Data LOD Cloud Federated system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 28–37 (2001)CrossRefGoogle Scholar
  2. 2.
    Prud Hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommendation 15 (2008)Google Scholar
  3. 3.
    Hoefler, P.: Linked Data Interfaces for Non-expert Users. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 702–706. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Russell, A., Smart, P.R., Braines, D., Shadbolt, N.R.: NITELIGHT: A Graphical Tool for Semantic Query Construction (2008)Google Scholar
  5. 5.
    Clark, L.: SPARQL Views: A Visual SPARQL Query Builder for Drupal. ISWC Posters & Demos (2010)Google Scholar
  6. 6.
    Kramer, K., Dividino, R., Grner, G.: SPACE: SPARQL Index for Efficient Autocompletion. In: ISWC Posters & Demonstrations Track, pp. 157–160 (2013)Google Scholar
  7. 7.
    Lehmann, J., Bühmann, L.: AutoSPARQL: Let users query your knowledge base. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 63–79. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Nmeth, Z., Sunderam, V.: A formal framework for defining grid systems. In: 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid. IEEE (2002)Google Scholar
  9. 9.
    Gurevich, Y.: Evolving algebras: An attempt to discover semantics. In: Current Trends in Theoretical Computer Science, pp. 266–292 (1993)Google Scholar
  10. 10.
    Börger, E.: High level system design and analysis using abstract state machines. In: Hutter, D., Traverso, P. (eds.) FM-Trends 1998. LNCS, vol. 1641, pp. 1–43. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Rakhmawati, N.A., Umbrich, J., Karnstedt, M., Hasnain, A., Hausenblas, M.: Querying over Federated SPARQL Endpoints-A State of the Art Survey. arXiv preprint arXiv:1306.1723 (2013)Google Scholar
  12. 12.
    Matuszka, T., Gombos, G., Kiss, A.: A New Approach for Indoor Navigation Using Semantic Webtechnologies and Augmented Reality. In: Shumaker, R. (ed.) VAMR/HCII 2013, Part I. LNCS, vol. 8021, pp. 202–210. Springer, Heidelberg (2013)Google Scholar
  13. 13.
    Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Schema Specification, http://www.w3.org/TR/rdf-schema

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gergő Gombos
    • 1
  • Attila Kiss
    • 1
  1. 1.Eötvös Loránd UniversityBudapestHungary

Personalised recommendations