Algorithm Comparison by Automatically Configurable Stochastic Local Search Frameworks: A Case Study Using Flow-Shop Scheduling Problems

  • Franco Mascia
  • Manuel López-Ibáñez
  • Jérémie Dubois-Lacoste
  • Marie-Éléonore Marmion
  • Thomas Stützle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8457)

Abstract

The benefits of hybrid stochastic local search (SLS) methods, in comparison with more classical (non-hybrid) ones are often difficult to quantify, since one has to take into account not only the final results obtained but also the effort spent on finding the best configuration of the hybrid and of the classical SLS method. In this paper, we study this trade-off by means of tools for automatic algorithm design, and, in particular, we study the generation of hybrid SLS algorithms versus selecting one classical SLS method among several. In addition, we tune the parameters of the classical SLS method separately and compare the results with the ones obtained when selection and tuning are done at the same time. We carry out experiments on two variants of the permutation flowshop scheduling problem that consider the minimization of weighted sum of completion times (PFSP-WCT) and the minimization of weighted tardiness (PFSP-WCT). Our results indicate that the hybrid algorithms we instantiate are able to match and improve over the best classical SLS method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search heuristics. IEEE Transactions on Evolutionary Computation 16(7), 406–417 (2012)CrossRefGoogle Scholar
  2. 2.
    Cerný, V.: A thermodynamical approach to the traveling salesman problem. Journal of Optimization Theory and Applications 45(1), 41–51 (1985)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, New York (1999)Google Scholar
  4. 4.
    Du, J., Leung, J.Y.T.: Minimizing total tardiness on one machine is NP-hard. Mathematics of Operations Research 15(3), 483–495 (1990)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Dubois-Lacoste, J.: A study of Pareto and Two-Phase Local Search Algorithms for Biobjective Permutation Flowshop Scheduling. Master’s thesis, IRIDIA, Université Libre de Bruxelles, Belgium (2009)Google Scholar
  6. 6.
    Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Computers & Operations Research 38(8), 1219–1236 (2011)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–113 (1995)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Fukunaga, A.S.: Automated discovery of local search heuristics for satisfiability testing. Evolutionary Computation 16(1), 31–61 (2008)CrossRefGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Mathematics of Operations Research 1, 117–129 (1976)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Glover, F.: Tabu search – Part I. INFORMS Journal on Computing 1(3), 190–206 (1989)CrossRefMATHGoogle Scholar
  11. 11.
    Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. European Journal of Operational Research 130(3), 449–467 (2001)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Hooker, J.N.: Testing heuristics: We have it all wrong. Journal of Heuristics 1(1), 33–42 (1996)CrossRefGoogle Scholar
  13. 13.
    Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2005)MATHGoogle Scholar
  14. 14.
    Humeau, J., Liefooghe, A., Talbi, E.G., Verel, S.: ParadisEO-MO: From fitness landscape analysis to efficient local search algorithms. Journal of Heuristics 19(6), 881–915 (2013)CrossRefGoogle Scholar
  15. 15.
    Johnson, D.S.: Optimal two- and three-stage production scheduling with setup times included. Naval Research Logistics Quarterly 1, 61–68 (1954)CrossRefGoogle Scholar
  16. 16.
    Johnson, D.S.: A theoretician’s guide to the experimental analysis of algorithms. In: Goldwasser, M.H., et al. (eds.) Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, pp. 215–250. American Mathematical Society, Providence (2002)Google Scholar
  17. 17.
    KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: Automatically building local search SAT solvers from components. In: Boutilier, C. (ed.) Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 517–524. AAAI Press, Menlo Park (2009)Google Scholar
  18. 18.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony optimization algorithms. IEEE Transactions on Evolutionary Computation 16(6), 861–875 (2012)CrossRefGoogle Scholar
  20. 20.
    Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search: Framework and applications. In: Gendreau, M., et al. (eds.) Handbook of Metaheuristics, ch. 9, 2nd edn. International Series in Operations Research & Management Science, vol. 146, pp. 363–397. Springer, New York (2010)CrossRefGoogle Scholar
  21. 21.
    Marmion, M.E., Mascia, F., López-Ibáñez, M., Stützle, T.: Automatic design of hybrid stochastic local search algorithms. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.) HM 2013. LNCS, vol. 7919, pp. 144–158. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. 22.
    Martí, R., Reinelt, G., Duarte, A.: A benchmark library and a comparison of heuristic methods for the linear ordering problem. Computational Optimization and Applications 51(3), 1297–1317 (2012)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: From grammars to parameters: Automatic iterated greedy design for the permutation flow-shop problem with weighted tardiness. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 321–334. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Tech. Rep. TR/IRIDIA/2013-015, IRIDIA, Université Libre de Bruxelles, Belgium (2013)Google Scholar
  25. 25.
    Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. INFORMS Journal on Computing 20(3), 451–471 (2008)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Nawaz, M., Enscore Jr., E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. OMEGA 11(1), 91–95 (1983)CrossRefGoogle Scholar
  27. 27.
    Pan, Q.K., Ruiz, R.: Local search methods for the flowshop scheduling problem with flowtime minimization. European Journal of Operational Research 222(1), 31–43 (2013)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization – Algorithms and Complexity. Prentice Hall, Englewood Cliffs (1982)MATHGoogle Scholar
  29. 29.
    Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research 177(3), 2033–2049 (2007)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Franco Mascia
    • 1
  • Manuel López-Ibáñez
    • 1
  • Jérémie Dubois-Lacoste
    • 1
  • Marie-Éléonore Marmion
    • 2
  • Thomas Stützle
    • 1
  1. 1.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium
  2. 2.LIFLUniversité Lille 1, Inria LilleFrance

Personalised recommendations