Advertisement

Designing Information for Mediated Reality Systems

  • Luis A. Vasconcelos
  • Felipe Breyer
  • Bernardo Reis
  • Aline Silveira
  • Daniela Falcone
  • Judith Kelner
  • Ubiratan Carmo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8518)

Abstract

Mediated reality systems introduce the possibility to alter users’ perception of the surrounding environment by adding or removing information. These particular innovative features made this technology attractive for several adjacent fields. However, despite their direct impact on the presentation of information, mediated reality systems are still poorly explored by information designers. Over the years, information design researchers have investigated and proposed tools and practices when planning information for different platforms and contexts. With respect to technical operations, visual instructions are very effective to convey information, and therefore a great opportunity for technology aided operations. This work establishes a dialogue between information design and mediated reality systems, and introduces some of the several concerns of this joint context. Based on correlated research, we identify general principles, challenges and opportunities for mediated reality applications, and for information designers willing to use them. Finally, we also introduce an early-stage system for technical operations as an opportunity to take further lessons and establish detailed recommendations.

Keywords

Mediated Reality Information Design Technical Operations Visual Instructions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sutherland, I.E.: A head-mounted three-dimensional display. In: Proceedings of the 1968, Fall Joint Computer Conference, Part I, December 9-11, pp. 757–764. ACM (1968)Google Scholar
  2. 2.
    Mann, S.: Mediated Reality. TR 260, M.I.T. Media Lab Perceptual Computing Section, Cambridge, Massachusetts (1994)Google Scholar
  3. 3.
    Webster, A., Feiner, S., Macintyre, B., Massie, W., Krueger, T.: Augmented Reality in Architectural Construction, Inspection, and Renovation. In: Proc. ASCE Third Congress on Computing in Civil Engineering, pp. 913–919 (1996)Google Scholar
  4. 4.
    Nielsen, M.B., Kramp, G., Grønbæk, K.: Mobile Augmented Reality Support for Architects Based on Feature Tracking Techniques. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 921–928. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Wagner, D., Pintaric, T., Ledermann, F., Schmalstieg, D.: Towards Massively Multi-user Augmented Reality on Handheld Devices. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 208–219. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent advances in augmented reality. IEEE Computer Graphics and Applications 21, 34–47 (2001)CrossRefGoogle Scholar
  7. 7.
    Nee, A.Y.C., Ong, S.K., Chryssolouris, G., Mourtzis, D.: Augmented reality applications in design and manufacturing. CIRP Annals - Manufacturing Technology 61, 657–679 (2012)CrossRefGoogle Scholar
  8. 8.
    Schwald, B., De Laval, B.: An augmented reality system for training and assistance to maintenance in the industrial context (2003)Google Scholar
  9. 9.
    Henderson, S.J., Feiner, S.K.: Augmented Reality in the Psychomotor Phase of a Procedural Task. In: Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 191–200. IEEE Computer Society, Washington, DC (2011)CrossRefGoogle Scholar
  10. 10.
    Henderson, S., Feiner, S.: Exploring the Benefits of Augmented Reality Documentation for Maintenance and Repair. IEEE Transactions on Visualization and Computer Graphics 17, 1355–1368 (2011)CrossRefGoogle Scholar
  11. 11.
    Ockerman, J.J., Pritchett, A.R.: Preliminary Investigation of Wearable Computers for Task Guidance in Aircraft Inspection. In: IEEE Proceedings of the 2nd International Symposium on Wearable Computers, pp. 33–40 (1998)Google Scholar
  12. 12.
    Henderson, S.J., Feiner, S.K.: Augmented reality for maintenance and repair (ARMAR). DTIC Document (2007)Google Scholar
  13. 13.
    Augmented Training Technology for Welding, http://www.soldamatic.com/EN2013.pdf
  14. 14.
  15. 15.
    Mann, S., Barfield, W.: Introduction to mediated reality. International Journal of Human-Computer Interaction 15, 205–208 (2003)CrossRefGoogle Scholar
  16. 16.
    Azuma, R.T.: A survey of augmented reality. Presence 6, 355–385 (1997)Google Scholar
  17. 17.
    Seo, B.-K., Lee, M.-H., Park, H., Park, J.-I.: Projection-Based Diminished Reality System. In: International Symposium on Ubiquitous Virtual Reality, ISUVR 2008, pp. 25–28 (2008)Google Scholar
  18. 18.
    Herling, J., Broll, W.: Advanced self-contained object removal for realizing real-time diminished reality in unconstrained environments. In: 2010 9th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 207–212. IEEE (2010)Google Scholar
  19. 19.
    Van Krevelen, D., Poelman, R.: A Survey of Augmented Reality Technologies, Applications and Limitations. The International Journal of Virtual Reality 9, 1–20 (2010)Google Scholar
  20. 20.
    Craig, A.B.: Chapter 5 – Content Is Key! – Augmented Reality Content. In: Craig, A.B. (ed.) Understanding Augmented Reality, pp. 151–183. Morgan Kaufmann, Boston (2013)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Meta SpaceGlasses, https://www.spaceglasses.com/
  23. 23.
    What is Information Design?, http://www.iiid.net/information.aspx
  24. 24.
    Jacobson, R.E., Jacobson, R.: Information Design. MIT Press (2000)Google Scholar
  25. 25.
    Visual Design in Action: Principles, Purposes. Hastings House (1961)Google Scholar
  26. 26.
    Svanaes, D., Seland, G.: Putting the Users Center Stage: Role Playing and Low-fi Prototyping Enable End Users to Design Mobile Systems. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 479–486. ACM, New York (2004)Google Scholar
  27. 27.
    Dix, A., Rodden, T., Davies, N., Trevor, J., Friday, A., Palfreyman, K.: Exploiting Space and Location as a Design Framework for Interactive Mobile Systems (2000)Google Scholar
  28. 28.
    Spinillo, C.G.: An analytical approach to procedural pictorial sequences. Unpublished PhD Thesis. Department of Typography & Graphic Communication, The University of Reading, UK (2000)Google Scholar
  29. 29.
    Twyman, M.L.: (cited in Spinillo, 2000) Using Pictorial Language: A Discussion of the Dimensions of the Problem. In: Duffy, Waller (eds.) Designing Usable Texts, Academic Press, London (1985)Google Scholar
  30. 30.
    Ashwin, C.: (cited in Spinillo, 2000) The ingredients of style in contemporary illustration: a case study. Information Design Journal 1, 51–67 (1979)Google Scholar
  31. 31.
    Spinillo, C.G., Souza, J.M.B., Maia, T.C., Storck, G.R., Oselame, A.: A representação gráfica de instruções visuais animadas: Um estudo analítico na perspectiva da ergonomia informacional. In: Proceedings of the 10o Ergodesign (2010)Google Scholar
  32. 32.
  33. 33.
    Animated Visual Instructions: Can We Do Better?, http://www.writersua.com/articles/animated/
  34. 34.
    Rieber, L.P., Kini, A.S.: Theoretical foundations of instructional applications of computer-generated animated visuals. Journal of Computer-Based Instruction, 83–88 (1991)Google Scholar
  35. 35.
    HotWheels’ animated instructions for Cyborg Assault, http://animatedvision.securesites.net/mattel/cyborgassault/loader.html
  36. 36.
    Nilsson, E.G.: Design patterns for user interface for mobile applications. Advances in Engineering Software 40, 1318–1328 (2009)CrossRefGoogle Scholar
  37. 37.
    Dünser, A., Grasset, R., Seichter, H., Billinghurst, M.: Applying HCI principles to AR systems design (2007)Google Scholar
  38. 38.
    Gong, C.: Human-Machine Interface: Design Principles of Visual Information in Human-Machine Interface Design. Presented at the (2009)Google Scholar
  39. 39.
    Siu, T., Herskovic, V.: SidebARs: improving awareness of off-screen elements in mobile augmented reality. Presented at the (2013)Google Scholar
  40. 40.
    O’Halloran, K., Tan, S., Smith, B., Podlasov, A.: Challenges in designing digital interfaces for the study of multimodal phenomena. Information Design Journal 18, 2–21 (2010)CrossRefGoogle Scholar
  41. 41.
    Gabbard, J.L., Hix, D.: Researching Usability Design and Evaluation Guidelines for Augmented Reality (AR) Systems. Laboratory for Scientific Visual Analysis, Virginia Tech, USA (2001)Google Scholar
  42. 42.
    Hix, D., Hartson, H.R.: Developing user interfaces: ensuring usability through product & process. J. Wiley, New York (1993)zbMATHGoogle Scholar
  43. 43.
    Darken, R.P., Sibert, J.L.: Navigating large virtual spaces. International Journal of Human-Computer Interaction 8, 49–71 (1996)CrossRefGoogle Scholar
  44. 44.
    Bowman, D.A., Hodges, L.F., Bolter, J.: The Virtual Venue: User-Computer Interaction in Information-Rich Virtual Environments. Presence: Teleoperators and Virtual Environments 7, 478–493 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Luis A. Vasconcelos
    • 1
  • Felipe Breyer
    • 1
  • Bernardo Reis
    • 1
  • Aline Silveira
    • 1
  • Daniela Falcone
    • 1
  • Judith Kelner
    • 1
  • Ubiratan Carmo
    • 2
  1. 1.Virtual Reality and Multimedia Research Group, Computer Science CentreFederal University of PernambucoRecife, PernambucoBrazil
  2. 2.Companhia Hidro Elétrica do São Francisco – CHESFRecife, PernambucoBrazil

Personalised recommendations