User Acceptance of Privacy-ABCs: An Exploratory Study

  • Zinaida Benenson
  • Anna Girard
  • Ioannis Krontiris
  • Vassia Liagkou
  • Kai Rannenberg
  • Yannis Stamatiou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8533)


In this work, we present the first statistical results on users’ understanding, usage and acceptance of a privacy-enhancing technology (PET) that is called “attribute-based credentials”, or Privacy-ABCs. We identify some shortcomings of the previous technology acceptance models when they are applied to PETs. Especially the fact that privacy-enhancing technologies usually assist both, the primary and the secondary goals of the users, was not addressed before. We present some interesting relationships between the acceptance factors. For example, understanding of the Privacy-ABC technology is correlated to the perceived usefulness of Privacy-ABCs. Moreover, perceived ease of use is correlated to the intention to use the technology. This confirms the conventional wisdom that understanding and usability of technology play important roles in the user adoption of PETs.


privacy enhancing technologies user acceptance model 


  1. 1.
    ABC4Trust: Attribute-based Credentials for Trust. EU-funded research and development project (accessed on April 26, 2013)Google Scholar
  2. 2.
    Brands, S.A.: Rethinking public key infrastructures and digital certificates: building in privacy. The MIT Press (2000)Google Scholar
  3. 3.
    Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Chaum, D.: Security without identification: transaction systems to make big brother obsolete. Commun. ACM 28(10) (October 1985)Google Scholar
  6. 6.
    Cranor, L.F., Garfinkel, S.: Security and Usability: Designing Secure Systems that People Can Use. O’Reilly (2008)Google Scholar
  7. 7.
    Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319–340 (1989)Google Scholar
  8. 8.
    Davis, F.D.: User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies 38(3), 475–487 (1993)CrossRefGoogle Scholar
  9. 9.
    Graf, C., Wolkerstorfer, P., Hochleitner, C., Wästlund, E., Tscheligi, M.: HCI for PrimeLife Prototypes. In: Camenisch, J., Fischer-Hübner, S., Rannenberg, K. (eds.) Privacy and Identity Management for Life, ch. 11, pp. 221–232. Springer (2011)Google Scholar
  10. 10.
    IBM Research Zurich. Idemix,
  11. 11.
    King, W.R., He, J.: A meta-analysis of the technology acceptance model. Information & Management 43(6), 740–755 (2006)CrossRefGoogle Scholar
  12. 12.
    Kumaraguru, P., Cranor, L.F.: Privacy indexes: A survey of Westin’s studies. Institute for Software Research. Paper 856 (2005)Google Scholar
  13. 13.
    Mayer, J., Mitchell, J.: Third-party web tracking: Policy and technology. In: 2012 IEEE Symposium on Security and Privacy, SP (2012)Google Scholar
  14. 14.
    Mcknight, D.H., Carter, M., Thatcher, J.B., Clay, P.F.: Trust in a specific technology: An investigation of its components and measures. ACM Transactions on Management Information Systems (TMIS) 2(2), 12 (2011)Google Scholar
  15. 15.
  16. 16.
    Pavlou, P.A.: Consumer acceptance of electronic commerce: integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce 7(3), 101–134 (2003)Google Scholar
  17. 17.
    Spiekermann, S.: Privacy enhancing technologies for RFID in retail- an empirical investigation. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 56–72. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Spiekermann, S., Cranor, L.: Engineering privacy. IEEE Transactions on Software Engineering 35(1) (2009)Google Scholar
  19. 19.
    Sun, S.-T., Pospisil, E., Muslukhov, I., Dindar, N., Hawkey, K., Beznosov, K.: What makes users refuse web single sign-on?: an empirical investigation of OpenID. In: Proceedings of the Seventh Symposium on Usable Privacy and Security, p. 4. ACM (2011)Google Scholar
  20. 20.
    Wästlund, E., Angulo, J., Fischer-Hübner, S.: Evoking comprehensive mental models of anonymous credentials. In: Camenisch, J., Kesdogan, D. (eds.) iNetSec 2011. LNCS, vol. 7039, pp. 1–14. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Wästlund, E., Fischer-Hübner, S.: The users’ mental models’ effect on their comprehension of anonymous credentials. In: Camenisch, J., Fischer-Hübner, S., Rannenberg, K. (eds.) Privacy and Identity Management for Life, ch. 12, pp. 233–244. Springer (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Zinaida Benenson
    • 1
  • Anna Girard
    • 1
  • Ioannis Krontiris
    • 2
  • Vassia Liagkou
    • 3
  • Kai Rannenberg
    • 2
  • Yannis Stamatiou
    • 2
  1. 1.Friedrich-Alexander-University Erlangen-NurembergGermany
  2. 2.Goethe University FrankfurtGermany
  3. 3.Computer Technology Institute PatrasGreece

Personalised recommendations