Advertisement

Soft Clustering Based on Hybrid Bayesian Networks in Socioecological Cartography

  • R. F. Ropero
  • P. A. Aguilera
  • R. Rumí
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8480)

Abstract

The interactions between nature and society need new tools capable of dealing with the inherent complexity and heterogeneity of the territory. Traditional clustering methodologies have been applied to solve this problem. Although these return adequate results, soft clustering based on hybrid Bayesian networks, returns more detailed results. Moreover their probabilistic nature delivers additional advantages. The main contribution of this paper, is to apply this tool to obtain the socioecological cartography of a Mediterranean watershed. The results are compared to a traditional agglomerative clustering.

Keywords

Bayesian Network Environmental System Research Institute Probabilistic Cluster Probabilistic Graphical Model Traditional Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Domon, G., Gariepy, M., Bouchard, A.: Ecological cartography and land-use planning: Trends and perspectives. Geoforum 20, 69–82 (1989)CrossRefGoogle Scholar
  2. 2.
    Anderies, J., Janssen, M., Ostom, E.: A framework to analyze the robustness of socio-ecological systems from an institutional perspective. Ecology & Society 9(1), 1–18 (2004)Google Scholar
  3. 3.
    Folke, C.: Resilience: The emergence of a perspective for social-ecological systems analyses. Global Environmental Change 16, 253–267 (2006)CrossRefGoogle Scholar
  4. 4.
    Pasqualini, V., Pergent-Martini, C., Clabaut, P., Pergent, G.: Mapping of posidonia oceanica using aerial photographs and side scan sonar: Application of the island of corsica (france). Estuarine, Coastal and Shelf Science 47, 359–367 (1998)CrossRefGoogle Scholar
  5. 5.
    Schmitz, M., Pineda, F., Castro, H., Aranzabal, I.D., Aguilera, P.: Cultural landscape and socioeconomic structure. Environmental value and demand for tourism in a Mediterranean territory. Consejería de Medio Ambiente. Junta de Andalucía, Sevilla (2005)Google Scholar
  6. 6.
    Ruiz-Labourdette, D., Martínez, F., Martín-López, B., Montes, C., Pineda, F.D.: Equilibrium of vegetation and climate at the european rear edge. a reference for climate change planning in mountainous mediterranean regions. Int. J. Biometeorol 55, 285–301 (2011)CrossRefGoogle Scholar
  7. 7.
    Hawkins, C.V.: Landscape conservation trough residential subdivision bylaws: Explanations for local adoption. Landscape and Urban Planning 12, 141–148 (2014)CrossRefGoogle Scholar
  8. 8.
    Jain, A.K., Murty, M.M., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)CrossRefGoogle Scholar
  9. 9.
    Aguilera, P.A., Fernández, A., Ropero, R.F., Molina, L.: Groundwater quality assessment using data clustering based on hybrid Bayesian networks. Stochastic Environmental Research & Risk Assessment 27(2), 435–447 (2013)CrossRefGoogle Scholar
  10. 10.
    Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Springer (2007)Google Scholar
  11. 11.
    Aguilera, P.A., Fernández, A., Fernández, R., Rumí, R., Salmerón, A.: Bayesian networks in environmental modelling. Environmental Modelling & Software 26, 1376–1388 (2011)CrossRefGoogle Scholar
  12. 12.
    Uusitalo, L.: Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling 203, 312–318 (2007)CrossRefGoogle Scholar
  13. 13.
    Lauritzen, S.L.: Propagation of probabilities, means and variances in mixed graphical association models. Journal of the American Statistical Association 87, 1098–1108 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Moral, S., Rumí, R., Salmerón, A.: Mixtures of Truncated Exponentials in Hybrid Bayesian Networks. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 156–167. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Shenoy, P.P., West, J.C.: Inference in hybrid Bayesian networks using mixtures of polynomials. International Journal of Approximate Reasoning 52(5), 641–657 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Langseth, H., Nielsen, T.D., Rumí, R., Salmerón, A.: Mixtures of Truncated Basis Functions. International Journal of Approximate Reasoning 53(2), 212–227 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Dan, L., Yang, H., Liang, X.: Prediction analysis of a wastewater treatment system using a bayesian network. Environmental Modelling & Software 40, 140–150 (2013)CrossRefGoogle Scholar
  18. 18.
    Rumí, R., Salmerón, A., Moral, S.: Estimating mixtures of truncated exponentials in hybrid Bayesian networks. Test 15, 397–421 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Rumí, R., Salmerón, A.: Approximate probability propagation with mixtures of truncated exponentials. International Journal of Approximate Reasoning 45, 191–210 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Cobb, B.R., Rumí, R., Salmerón, A.: Bayesian networks models with discrete and continuous variables. In: Lucas, P., Gámez, J.A., Salmerón, A. (eds.) Advances in Probabilistic Graphical Models. STUDFUZZ, vol. 214, pp. 81–102. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Elvira-Consortium: Elvira: An Environment for Creating and Using Probabilistic Graphical Models. In: Proceedings of the First European Workshop on Probabilistic Graphical Models, pp. 222–230 (2002)Google Scholar
  22. 22.
    Anderberg, M.R.: Cluster Analysis for Applications. Academic Press (1973)Google Scholar
  23. 23.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley Interscience (2001)Google Scholar
  24. 24.
    Tanner, M.A., Wong, W.H.: The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association 82, 528–550 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Lauritzen, S.L.: The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis 19, 191–201 (1995)CrossRefzbMATHGoogle Scholar
  26. 26.
    Gower, J.: A general coefficient of similarity and some of its properties. Biometrics 27, 857–874 (1971)CrossRefGoogle Scholar
  27. 27.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2012) ISBN 3-900051-07-0Google Scholar
  28. 28.
    Rousseeuw, P.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRefzbMATHGoogle Scholar
  29. 29.
    ESRI: ArcMap Version 9.3. Environmental Systems Research Institute (ESRI), Redlands, CA (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • R. F. Ropero
    • 1
  • P. A. Aguilera
    • 1
  • R. Rumí
    • 2
  1. 1.Dpt. Biology and GeologyUniversity of AlmeríaSpain
  2. 2.Dpt. of MathematicsUniversity of AlmeríaSpain

Personalised recommendations