Advertisement

Extending Qualitative Spatial Theories with Emergent Spatial Concepts

An Automated Reasoning Approach
  • Gonzalo A. Aranda-Corral
  • Joaquín Borrego-Díaz
  • Antonia M. Chávez-González
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8480)

Abstract

Qualitative Spatial Reasoning is an exciting research field of the Knowledge Representation and Reasoning paradigm whose application often requires the extension, refinement or combination of existent theories (as well as the associated calculus). This paper addresses the issue of the sound spatial interpretation of formal extensions of such theories; particularly the interpretation of the extension and the desired representational features. The paper shows how to interpret certain kinds of extensions of Region Connection Calculus (RCC) theory. We also show how to rebuild the qualitative calculus of these extensions.

Keywords

Topological Space Geographic Information System Spatial Reasoning Formal Ontology Transition Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso-Jiménez, J., Borrego-Díaz, J., Chávez-González, A., Martín-Mateos, F.J.: Foundational challenges in automated semantic web data and ontology cleaning. IEEE Intelligent Systems 21(1), 42–52 (2006)CrossRefGoogle Scholar
  2. 2.
    Aranda-Corral, G.A., Borrego-Díaz, J.: Mereotopological analysis of formal concepts in security ontologies. In: Herrero, Á., Corchado, E., Redondo, C., Alonso, Á. (eds.) CISIS 2010. AISC, vol. 85, pp. 33–40. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Aranda-Corral, G., Borrego-Díaz, J., Chávez-González, A.: Repairing conceptual relations in ontologies by means of an interactive visual reasoning: Cognitive and design principles. In: Proc. 3rd IEEE Int. Conf. on Cognitive Infocommunications, pp. 739–744 (2012)Google Scholar
  4. 4.
    Bennett, B.: The role of definitions in construction and analysis of formal ontologies. In: Logical Formalization of Commonsense Reasoning 2003. AAAI Press (2003)Google Scholar
  5. 5.
    Bittner, T., Stell, J.G.: Rough sets in approximate spatial reasoning. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 445–553. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Borrego-Díaz, J., Chávez-González, A.M.: Visual ontology cleaning: Cognitive principles and applicability. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 317–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Borrego-Díaz, J., Chávez-González, A.M.: A formal foundation for knowledge integration of defficent information in the semantic web. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 305–312. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Borrego-Díaz, J., Chávez-González, A.M.: Using cognitive entropy to manage uncertain concepts in formal ontologies. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 315–329. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Borrego-Díaz, J., Chávez-González, A.: On the use of automated reasoning systems in ontology integration. In: Proc. 3rd Int. Workshop Ontology, Conceptualization and Epistemology for Inf. Syst., Soft. Eng. and Service Sci., vol. 460, pp. 37–48. CEUR Proceedings (2009)Google Scholar
  10. 10.
    Borrego-Díaz, J., Chávez-González, A.M.: Extension of ontologies assisted by automated reasoning systems. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2005. LNCS, vol. 3643, pp. 247–253. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Borrego-Díaz, J., Chávez-González, A.M., Martín-Pérez, M.A., Zamora-Aguilera, J.A.: Semantic geodemography and urban interoperability. In: Dodero, J.M., Palomo-Duarte, M., Karampiperis, P. (eds.) MTSR 2012. CCIS, vol. 343, pp. 1–12. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Cohn, A.G., Renz, J.: Qualitative spatial reasoning. In: Handbook of Knowledge Representation. Elsevier (2007)Google Scholar
  13. 13.
    Cohn, A., Gotts, N.: The ‘egg-yolk’ representation of regions with indeterminate boundaries. In: Proc. Specialist Meeting on Geographical Objects with Undetermined Boundaries. GISDATA Series, vol. 3, pp. 171–187. Taylor and Francis (1995)Google Scholar
  14. 14.
    Corchado, E., Woźniak, M., Abraham, A., de Carvalho, A.A.C.P.L.F., Snásel, V.: Recent trends in intelligent data analysis. Neurocomputing 126, 1–2 (2014)CrossRefGoogle Scholar
  15. 15.
    Gerevini, A., Renz, J.: Combining topological and size information for spatial reasoning. Artif. Intell. 137(1-2), 1–42 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Grohe, M., Segoufin, L.: On first-order topological queries. ACM Trans. Comput. Logic 3(3), 336–358 (2002), http://doi.acm.org/10.1145/507382.507384 CrossRefMathSciNetGoogle Scholar
  17. 17.
    Grütter, R., Scharrenbach, T., Bauer-Messmer, B.: Improving an RCC-derived geospatial approximation by OWL axioms. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 293–306. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Hernández, D.: Qualitative Representation of Spatial Knowledge. LNCS, vol. 804. Springer, Heidelberg (1994)CrossRefzbMATHGoogle Scholar
  19. 19.
    Knauff, M., Rauh, R., Renz, J.: A cognitive assessment of topological spatial relations: Results from an empirical investigation. In: Frank, A.U. (ed.) COSIT 1997. LNCS, vol. 1329, pp. 193–206. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  20. 20.
    Li, S., Ying, M.: Region connection calculus: Its models and composition table. Artificial Intelligence 145(1-2), 121–146 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Randell, D., Cohn, A., Cui, Z.: Computing transitivity tables: A challenge for automated theorem provers. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 786–790. Springer, Heidelberg (1992)Google Scholar
  22. 22.
    Renz, J.: Qualitative Spatial Reasoning with Topological Information. LNCS (LNAI), vol. 2293. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  23. 23.
    Vigneron, L., Wasilewska, A.: Rough Diagrams. In: 6th Int. Workshop Rough Sets, Data Mining & Granular Computing, p. 4 (1998), http://hal.inria.fr/inria-00098493/en/
  24. 24.
    Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Information Fusion 16, 3–17 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gonzalo A. Aranda-Corral
    • 1
  • Joaquín Borrego-Díaz
    • 2
  • Antonia M. Chávez-González
    • 2
  1. 1.Departamento de Tecnologías de la Información., Escuela Técnica Superior de IngenieríaUniversidad de HuelvaPalos de La FronteraSpain
  2. 2.Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S. Ingeniería InformáticaUniversidad de SevillaSevillaSpain

Personalised recommendations