A Hybrid System of Signature Recognition Using Video and Similarity Measures

  • Rafal Doroz
  • Krzysztof Wrobel
  • Mateusz Watroba
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8480)


The method proposed in this paper uses signatures recorded with the use of four webcams. In the method a different sets of signature features and similarity measures can be used. Additionally, the influence of individual features on the signature similarity value has been examined. Practical experiments were also conducted with the own signatures’ database and confirmed that results obtained are promising.


biometrics hybrid system signature recognition dynamic features similarity measures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahrary, A., Chiang, H.-J., Kamata, S.-I.: On-line signature matching based on Hilbert scanning patterns. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 1190–1199. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Barkoula, K., Economou, G., Fotopoulos, S.: Online signature verification based on signatures turning angle representation using longest common subsequence matching. International Journal on Document Analysis and Recognition (IJDAR) 16(3), 261–272 (2013)CrossRefGoogle Scholar
  3. 3.
    Barroso, N., López de Ipiña, K., Ezeiza, A., Barroso, O., Susperregi, U.: Hybrid Approach for Language Identification Oriented to Multilingual Speech Recognition in the Basque Context. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010, Part I. LNCS, vol. 6076, pp. 196–204. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bolle, R., Connell, J., Pankanti, S., Ratha, N., Senior, A.: Guide to Biometrics. Springer, New York (2004)CrossRefGoogle Scholar
  5. 5.
    Brunelli, R.: Template Matching Techniques in Computer Vision: Theory and Practice. Wiley (2009)Google Scholar
  6. 6.
    Cha, S.C.: Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions. International Journal of Mathematical Models and Methods in Applied Sciences 1(4), 300–307 (2007)MathSciNetGoogle Scholar
  7. 7.
    Cyganek, B., Gruszczynski, S.: Hybrid computer vision system for drivers’ eye recognition and fatigue monitoring. In: 6th International Conference on Hybrid Artificial Intelligence Systems (HAIS), Wroclaw, pp. 78–94 (2011)Google Scholar
  8. 8.
    Doroz, R., Porwik, P.: Handwritten Signature Recognition with Adaptive Selection of Behavioral Features. In: Chaki, N., Cortesi, A. (eds.) CISIM 2011. CCIS, vol. 245, pp. 128–136. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Flores-Mendez, A., Bernal-Urbina, M.: Dynamic signature verification through the longest common subsequence problem and genetic algorithms. In: Proceedings of the IEEE Congress Evol. Computing, pp. 1–6 (2010)Google Scholar
  10. 10.
    Gupta, G.K., Joyce, R.C.: Using position extreme points to capture shape in on-line handwritten signature verification. Pattern Recognition 40, 2811–2817 (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Jain, A.K., et al.: Handbook of biometrics. Springer, New York (2007)Google Scholar
  12. 12.
    Koprowski, R., Wrobel, Z., Wilczynski, S.: Methods of measuring the iridocorneal angle in tomographic images of the anterior segment of the eye. Biomedical Engineering Online 12, Article Number: 40 (2013)Google Scholar
  13. 13.
    Koprowski, R., Wrobel, Z., Zieleznik, W.: Automatic Ultrasound Image Analysis in Hashimoto’s Disease. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Kittler, J. (eds.) MCPR 2010. LNCS, vol. 6256, pp. 98–106. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Kostorz, I., Doroz, R.: On-line signature recognition based on reduced set of points. In: Burduk, R., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Computer Recognition Systems 4. AISC, vol. 95, pp. 3–11. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Lei, H., Govindaraju, V.: A comparative study on the consistency of features in on-line signature verification. Pattern Recognition Letters 26(15), 2483–2489 (2005)CrossRefGoogle Scholar
  16. 16.
    Lei, H., Palla, S., Govindaraju, V.: ER 2: an intuitive similarity measure for on-line signature verification. In: Ninth International Workshop on Frontiers in Handwriting Recognition, pp. 191–195. IEEE Computer Society (2004)Google Scholar
  17. 17.
    Lin, Y.H., Chen, C.H.: Template Matching Using the Parametric Template Vector with Translation, Rotation and Scale Invariance. Pattern Recognition 41(7), 2413–2421 (2008)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lumini, A., Nanni, L.: Ensemble of on-line signature matchers based on OverComplete feature generation. Expert Systems With Applications 36(3), 5291–5296 (2009)CrossRefGoogle Scholar
  19. 19.
    Maiorana, E.: Biometric cryptosystem using function based on-line signature recognition. Expert Systems With Applications 37(4), 3454–3461 (2010)CrossRefGoogle Scholar
  20. 20.
    Meshoul, S., Batouche, M.: A novel approach for online signature verification using Fisher based probabilistic neural network. In: Proceedings of the IEEE Symposium on Comp. Comm., pp. 314–319 (2010)Google Scholar
  21. 21.
    Muramatsu, D., Yasuda, K., Matsumoto, T.: Biometric Person Authentication Method Using Camera-Based Online Signature Acquisition. In: Document Analysis and Recognition, pp. I46–I50 (2009)Google Scholar
  22. 22.
    Mohammadi, M.H., Faez, K.: Matching between important points using dynamic time warping for online signature verification. J. Sel. Areas Bioinf. (JBIO) (2012)Google Scholar
  23. 23.
    Nanni, L., Lumini, A.: Ensemble of Parzen window classifiers for on-line signature verification. Neurocomputing 68, 217–224 (2005)CrossRefGoogle Scholar
  24. 24.
    Nanni, L., Maiorana, E., Lumini, A., Campisi, P.: Combining local, regional and global matchers for a template protected on-line signature verification system. Expert Systems With Applications 37(5), 3676–3684 (2010)CrossRefGoogle Scholar
  25. 25.
    Ong, T.S., Khoh, W.H., Teoh, A.: Dynamic handwritten signature verification based on statistical quantization mechanism. In: Proceedings of the International Conference on Comput. Engineering Technology, pp. 312–316 (2009)Google Scholar
  26. 26.
    Piyush Shanker, A., Rajagopalan, A.N.: Off-line signature verification using DTW. Pattern Recognition Letters 28(12), 1407–1414 (2007)CrossRefGoogle Scholar
  27. 27.
    Porwik, P., Doroz, R., Wrobel, K.: A new signature similarity measure. In: World Congress on Nature & Biologically Inspired Computing (NABIC 2009), pp. 1021–1026 (2009)Google Scholar
  28. 28.
    Saeidi, M., Amirfattahi, R., Amini, A., Sajadi, M.: Online signature verification using combination of two classifiers. In: Proceedings of the 6th Iran Mach. Vis. Image. Proc., pp. 1–4 (2010)Google Scholar
  29. 29.
    Vargas, J.F., Ferrer, M.A., Travieso, C.M., Alonso, J.B.: Off-line signature verification based on grey level information using texture features. Pattern Recognition 44(2), 375–385 (2011)CrossRefzbMATHGoogle Scholar
  30. 30.
    Vélez, J., Sánchez, Á., Moreno, B., Esteban, J.L.: Fuzzy shape-memory snakes for the automatic off-line signature verification problem. Fuzzy Sets and Systems 160(2), 182–197 (2009)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Villaverde, I., Graña, M.: A Hybrid Intelligent System for Robot Ego Motion Estimation with a 3D Camera. In: Corchado, E., Abraham, A., Pedrycz, W. (eds.) HAIS 2008. LNCS (LNAI), vol. 5271, pp. 657–664. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Wang, K., Wang, Y., Zhang, Z.: On-line signature verification using wavelet packet. In: Proceedings of the International Joint Confrenece on Biom. (IJCB), pp. 1–6 (2011)Google Scholar
  33. 33.
    Wen, J., Fang, B., Tang, Y.Y., Zhang, T.: Model-based signature verification with rotation invariant features. Pattern Recognition 42(7), 1458–1466 (2009)CrossRefzbMATHGoogle Scholar
  34. 34.
    Wrobel, K., Doroz, R.: The new method of signature recognition based on least squares contour alignment. In: International Conference on Biometrics and Kansei Engineering (ICBAKE 2009), pp. 80–83 (2009)Google Scholar
  35. 35.
    Yasuda, K., Matsumoto, T., Muramatsu, D.: Visual-based online signature verification using features extracted from video. Journal of Network and Computer Applications Archive, 333–341 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rafal Doroz
    • 1
  • Krzysztof Wrobel
    • 1
  • Mateusz Watroba
    • 1
  1. 1.Institute of Computer ScienceUniversity of SilesiaSosnowiecPoland

Personalised recommendations