Computer Aided Diagnosis of Schizophrenia Based on Local-Activity Measures of Resting-State fMRI

  • Alexandre Savio
  • Darya Chyzhyk
  • Manuel Graña
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8480)


Resting state functional Magnetic Resonance Imaging (rs-fMRI) is increasingly used for the identification of image biomarkers of brain diseases or psychiatric conditions, such as Schizophrenia. One approach is to perform classification experiments on the data, using feature extraction methods that allow to localize the discriminant locations in the brain, so that further studies may assess the clinical value of such locations. The classification accuracy results ensure that the located brain regions have some relation to the disease. In this paper we explore the discriminant value of brain local activity measures for the classification of Schizophrenia patients. The extensive experimental work, carried out on a publicly available database, provides evidence that local activity measures such as Regional Homogeneity (ReHo) may be useful for such purposes.


Feature Selection Random Forest Functional Connectivity Feature Extraction Method Functional Magnetic Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gregory Ashby, F.: Statistical Analysis of fMRI Data, 1st edn. The MIT Press (March 2011)Google Scholar
  2. 2.
    American Psychiatric Association. DSM-IV-TR: Diagnostic and Statistical Manual of Mental Disorders (Diagnostic & Statistical Manual of Mental Disorders, 4th text revision edn. American Psychiatric Press Inc. (July 2000)Google Scholar
  3. 3.
    Borrajo, M.L., Baruque, B., et al.: Hybrid neural intelligent system to predict business failure in small-to-medium size enterprise. International Journal of Neural Systems 21(04), 277–296 (2011) 00012Google Scholar
  4. 4.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Calhoun, V.D., Sui, J., Kiehl, K., et al.: Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder. Frontiers in Neuropsychiatric Imaging and Stimulation 2, 75 (2012)Google Scholar
  6. 6.
    Castro, E., et al.: Characterization of groups using composite kernels and multi-source fMRI analysis data: Application to schizophrenia. NeuroImage 58(2), 526–536 (2011)CrossRefGoogle Scholar
  7. 7.
    Cox, R.W.: AFNI: what a long strange trip it’s been. NeuroImage 62(2), 743–747 (2012)CrossRefGoogle Scholar
  8. 8.
    Fekete, T., et al.: Combining classification with fMRI-Derived complex network measures for potential neurodiagnostics. PLoS ONE 8(5), e62867 (2013)Google Scholar
  9. 9.
    Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L.: Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1), 313–327 (2011) PMID: 20656036 PMCID: PMC2962759CrossRefGoogle Scholar
  10. 10.
    Fox, M.D., Zhang, D., Snyder, A.Z., Raichle, M.E.: The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology 101(6), 3270–3283 (2009) PMID: 19339462CrossRefGoogle Scholar
  11. 11.
    Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S., Turner, R.: Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 35(3), 346–355 (1996) PMID: 8699946CrossRefGoogle Scholar
  12. 12.
    Jenkinson, M., et al.: FSL. NeuroImage 62(2), 782–790 (2012)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Medical Image Analysis 5(2), 143–156 (2001)CrossRefGoogle Scholar
  14. 14.
    Liu, D., Yan, C., Ren, J., Yao, L., Kiviniemi, V.J., Zang, Y.: Using coherence to measure regional homogeneity of restingstate fMRI signal. Frontiers in Systems Neuroscience 4, 24 (2010)Google Scholar
  15. 15.
    McGuire, P.K., Frith, C.D.: Disordered functional connectivity in schizophrenia. Psychological Medicine 26(4), 663–667 (1996) PMID: 8817700CrossRefGoogle Scholar
  16. 16.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., et al.: Scikit-learn: Machine learning in python. Journal of Machine Learning Research 12, 2825–2830 (2011)zbMATHGoogle Scholar
  17. 17.
    Savio, A., Graña, M.: Deformation based feature selection for computer aided diagnosis of alzheimer’s disease. Expert Systems with Applications 40(5), 1619–1628 (2013) 00006CrossRefGoogle Scholar
  18. 18.
    Charpentier, J., Savio, A.: Neural classifiers for schizophrenia diagnostic support on diffusion imaging data. Neural Network World 20, 935–949 (2010) 00005 Google Scholar
  19. 19.
    Stark, D.E., Margulies, D.S., et al.: Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations. The Journal of Neuroscience 28(51), 13754–13764 (2008)CrossRefGoogle Scholar
  20. 20.
    Tang, Y., Wang, L., Cao, F., Tan, L.: Identify schizophrenia using resting-state functional connectivity: an exploratory research and analysis. BioMedical Engineering OnLine 11(1), 50 (2012) PMID: 22898249CrossRefGoogle Scholar
  21. 21.
    Van Dijk, K.R.A., Sabuncu, M.R., Buckner, R.L.: The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 59(1), 431–438 (2012)CrossRefGoogle Scholar
  22. 22.
    Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience (September 1998)Google Scholar
  23. 23.
    Wernicke, C.: Grundriss der Psychiatrie in klinischen Vorlesungen / von Carl Wernicke. VDM Verlag Dr. Müller, Saarbrücken (2007)Google Scholar
  24. 24.
    Wozniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Information Fusion 16, 3–17 (2014)CrossRefGoogle Scholar
  25. 25.
    Wible, C.G., Shenton, M.E., Hokama, H., Kikinis, R., Jolesz, F.A., Metcalf, D., McCarley, R.W.: Prefrontal cortex and schizophrenia: A quantitative magnetic resonance imaging study. Archives of General Psychiatry 52(4), 279–288 (1995)CrossRefGoogle Scholar
  26. 26.
    Zang, Y.-F., et al.: Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain & Development 29(2), 83–91 (2007) PMID: 16919409CrossRefMathSciNetGoogle Scholar
  27. 27.
    Zang, Y., et al.: Regional homogeneity approach to fMRI data analysis. NeuroImage 22(1), 394–400 (2004)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging 20(1), 45–57 (2001)CrossRefGoogle Scholar
  29. 29.
    Zuo, X.-N., Martino, A.D., Kelly, C., et al.: The oscillating brain: Complex and reliable. NeuroImage 49(2), 1432–1445 (2010) PMID: 19782143 PMCID: PMC2856476CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexandre Savio
    • 1
  • Darya Chyzhyk
    • 1
  • Manuel Graña
    • 1
  1. 1.Computational Intelligence GroupUniversity of the Basque Country (UPV/EHU)San SebastiánSpain

Personalised recommendations