Define, Verify, Refine: Correct Composition and Transformation of Concurrent System Semantics

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8348)

Abstract

We present a technique to verify user-defined model transformations, in order to step-wise develop formal models of concurrent systems. The main benefit is that the changes applied to a model can be verified in isolation. In particular, the preservation of safety and liveness properties of such a modification can be determined independent of the input model. This is particularly useful for model-driven development approaches, where systems are designed and created by first developing an abstract model, and iteratively modifying this model until it is concrete enough to automatically generate source code from it. Properties that already hold on the initial model and should remain valid throughout the development in later models can be maintained with our tool Refiner, by which the effort of verifying those properties over and over again can be avoided. This paper generalises our earlier results in various ways, removing several restrictions, improving the focus of the verification method on transformations, and introducing the possibility to add completely new components at any time during the development.

References

  1. 1.
    Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput. Sci. 82, 253–284 (1991)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466 (2010)CrossRefGoogle Scholar
  3. 3.
    Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., Sifakis, J.: Rigorous component-based system design using the Bip framework. IEEE Softw. 28(3), 41–48 (2011)CrossRefGoogle Scholar
  4. 4.
    Blech, J.O., Glesner, S., Leitner, J.: Formal verification of Java code generation from UML models. In: Fujaba Days 2005, pp. 49–56 (2005)Google Scholar
  5. 5.
    Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wesselink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 199–213. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Engelen, L.J.P., Wijs, A.J.: Checking property preservation of refining transformations for model-driven development. CS-Report 12–08, TU Eindhoven (2012)Google Scholar
  7. 7.
    Fokkink, W.J., Pang, J., Wijs, A.J.: Is timed branching bisimilarity an equivalence indeed? In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 258–272. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  8. 8.
    Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: a toolbox for the construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  9. 9.
    Giese, H., Glesner, S., Leitner, J., Schäfer, W., Wagner, R.: Towards verified model transformations. In: 3rd International Workshop on Model Development, Validation and Verification (MoDeVVa 2006), pp. 78–93. IEEE Press, New York (2006)Google Scholar
  10. 10.
    Giese, H., Lambers, L.: Towards automatic verification of behavior preservation for model transformation via invariant checking. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 249–263. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    van Glabbeek, R.J., Luttik, B., Trčka, N.: Branching bisimilarity with explicit divergence. Fundam. Inform. 93(4), 371–392 (2009)MATHGoogle Scholar
  12. 12.
    van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM 43(3), 555–600 (1996)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Fundam. Inform. 26(3–4), 287–313 (1996)MATHMathSciNetGoogle Scholar
  14. 14.
    Heckel, R.: Graph transformation in a nutshell. Electron. Notes Theor. Comput. Sci. 148, 187–198 (2006)CrossRefGoogle Scholar
  15. 15.
    Hülsbusch, M., König, B., Rensink, A., Semenyak, M., Soltenborn, Ch., Wehrheim, H.: Showing full semantics preservation in model transformation - a comparison of techniques. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 183–198. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  16. 16.
    Kahsai, T., Roggenbach, M.: Property preserving refinement for Csp-Casl. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 206–220. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  17. 17.
    Kozen, D.: Results on the propositional \(\mu \)-calculus. Theoret. Comput. Sci. 27, 333–354 (1983)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Kundu, S., Lerner S., Gupta, R.: Automated refinement checking of concurrent systems. In: 26th International Conference on Computer-Aided Design (ICCAD 2007), pp. 318–325. IEEE Press, New York (2007)Google Scholar
  19. 19.
    Lambers, L., Ehrig, H.: Efficient conflict detection in graph transformation systems by essential critical pairs. Electron. Notes Theor. Comput. Sci. 211, 17–26 (2008)CrossRefGoogle Scholar
  20. 20.
    Lang, F.: Exp.Open 2.0: a flexible tool integrating partial order, compositional, and on-the-fly verification Methods. In: Romijn, J.M.T., Smith, G.P., van de Pol, J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  21. 21.
    Mateescu, R., Wijs, A.: Property-dependent reductions for the modal mu-calculus. In: Groce, A., Musuvathi, M. (eds.) SPIN Workshops 2011. LNCS, vol. 6823, pp. 2–19. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  22. 22.
    Narayanan, A., Karsai, G.: Towards verifying model transformations. Electron. Notes Theor. Comput. Sci. 211, 191–200 (2008)CrossRefGoogle Scholar
  23. 23.
    Sokolsky, O.V., Smolka, S.A.: Incremental model checking in the modal mu-calculus. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 351–363. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  24. 24.
    Swamy, G.M.: Incremental methods for formal verification and logic synthesis. Ph.D. thesis, University of California (1996)Google Scholar
  25. 25.
    Varró, D., Pataricza, A.: Automated formal verification of model transformations. In: Critical Systems Development with UML (CSDUML 2003), pp. 63–78 (2003)Google Scholar
  26. 26.
    Wijs, A.J.: Achieving Discrete relative timing with untimed process algebra. In: 12th International Conference on Engineering of Complex Computer Systems (ICECCS 2007), pp. 35–44. IEEE Press, New York (2007)Google Scholar
  27. 27.
    Wijs, A.J.: What to do next?: analysing and optimising system behaviour in time. Ph.D. thesis, VU University, Amsterdam (2007)Google Scholar
  28. 28.
    Wijs, A.J., Engelen, L.J.P.: Incremental formal verification for model refining. In: 9th International Workshop on Model Development, Validation and Verification (MoDeVVa 2012), pp. 29–34. ACM Press, New York (2012)Google Scholar
  29. 29.
    Wijs, A., Engelen, L.: Efficient property preservation checking of model refinements. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 565–579. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  30. 30.
    Wijs, A.J., Lisser, B.: Distributed extended beam search for quantitative model checking. In: Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS (LNAI), vol. 4428, pp. 166–184. Springer, Heidelberg (2007) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations