Are There Semantic Primes in Formal Languages?

  • Johannes Fähndrich
  • Sebastian Ahrndt
  • Sahin Albayrak
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 290)

Abstract

This paper surveys languages used to enrich contextual information with semantic descriptions. Such descriptions can be e.g. applied to enable reasoning when collecting vast amounts of row data in domains like smart environments. In particular, we focus on the elements of the languages that make up their semantic. To do so, we compare the expressiveness of the well-known languages OWL, PDDL and MOF with a theory from linguistic called the Natural Semantic Metalanguage.

Keywords

Context Description Languages Contextual Reasoning OWL PDDL NSM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bikakis, A., Patkos, T., Antoniou, G., Plexousakis, D.: A survey of semantics-based approaches for context reasoning in ambient intelligence. In: Mühlhäuser, M., Ferscha, A., Aitenbichler, E. (eds.) AmI 2007 Workshops. CCIS, vol. 11, pp. 14–23. Springer, Heidelberg (2008)Google Scholar
  2. 2.
    Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal representation for bdi agent systems. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 44–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing environments. The Knowledge Engineering Review 18(03), 197–207 (2003)CrossRefGoogle Scholar
  4. 4.
    Colombetti, M., Verdicchio, M.: An analysis of agent speech acts as institutional actions. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 3, pp. 1157–1164. ACM (2002)Google Scholar
  5. 5.
    Duda, R.O., Stork, D.G., Hart, P.E.: Pattern classification and scene analysis. Part 1, Pattern classification. Wiley, Chichester (2000)Google Scholar
  6. 6.
    Favre, J.-M.: Foundations of meta-pyramids: languages vs. metamodels. In: Episode II. Story of Thotus the Baboon, Procs. Dagstuhl Seminar, vol. 4101 (2004)Google Scholar
  7. 7.
    Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal planning domains. Journal of Artifical Intelligence Research 20, 61–124 (2003)MATHGoogle Scholar
  8. 8.
    Goddard, C., Wierzbicka, A.: Semantic and lexical universals: Theory and empirical findings, vol. 25. John Benjamins Publishing Company (1994)Google Scholar
  9. 9.
    Goddard, C.: Natural Semantic Metalanguage: The state of the art. In: Cross-Linguistic Semantics, pp. 1–34. John Benjamins Publishing Company (2008)Google Scholar
  10. 10.
    Goddard, C.: Semantic molecules and semantic complexity(with special reference to “environmental” molecules). Review of Cognitive Linguistics 8(1), 123–155 (2010)MathSciNetGoogle Scholar
  11. 11.
    Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: Owl 2: The next step for owl. In: Web Semantics: Science, Services and Agents on the World Wide Web, vol. 6(4), pp. 309–322 (2008)Google Scholar
  12. 12.
    Gupta, N., Nau, D.S.: On the complexity of blocks-world planning. Artificial Intelligence 56(2), 223–254 (1992)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Henricksen, K., Indulska, J.: Modelling and using imperfect context information. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops 2004, pp. 33–37. IEEE (2004)Google Scholar
  14. 14.
    Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M., et al.: Swrl: A semantic web rule language combining owl and ruleml. W3C Member Submission 21, 79 (2004)Google Scholar
  15. 15.
    Lassila, O., Swick, R.R.: Resource description framework (rdf) model and syntax specification (1999)Google Scholar
  16. 16.
    McDermott, D.: The formal semantics of processes in pddl. In: Proc. ICAPS Workshop on PDDL, pp. 101–155. Citeseer (2003)Google Scholar
  17. 17.
    McGuinness, D.L., Van Harmelen, F., et al.: Owl web ontology language overview. W3C Recommendation 10(2004-03), 10 (2004)Google Scholar
  18. 18.
    Melčuk, I., Wanner, L.: Lexical functions and lexical inheritance for emotion lexemes in german. In: Benjamin, J. (ed.) Lexical Functions in Lexicography and Natural Language Processing, Amsterdam, Philadelphia, pp. 209–278 (1996)Google Scholar
  19. 19.
    Grundlagen der Theorie Unscharfer Mengen. Fuzzy decision support-systeme (1994)Google Scholar
  20. 20.
    Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges. ACM Transactions on Autonomous and Adaptive Systems 4(2), 1–42 (2009)CrossRefGoogle Scholar
  21. 21.
    Smith, J., DeLoach, S., Kokar, M., Baclawski, K.: Category theoretic approaches of representing precise uml semantics. In: ECOOP Workshop on Defining Precise Semantics for UML (2000)Google Scholar
  22. 22.
    Sternberg, R.J.: Beyond IQ: A triarchic theory of human intelligence (1985)Google Scholar
  23. 23.
    Stoilos, G., Simou, N., Stamou, G., Kollias, S.: Uncertainty and the semantic web. IEEE Intelligent Systems 21(5), 84–87 (2006)CrossRefGoogle Scholar
  24. 24.
    van der Hoek, W.: Epistemic logic for AI and computer science, vol. 41. Cambridge University Press (2004)Google Scholar
  25. 25.
    Wierzbicka, A.: Semantics: Primes and Universals. Oxford University Press (1996)Google Scholar
  26. 26.
    Wierzbicka, A.: English: meaning and culture (2006)Google Scholar
  27. 27.
    Wierzbicka, A.: Mental lexicon. In: The Slavic Languages: An International Handbook of Their History, Their Structure and Their Investigation. Mouton de Gruyter, Berlin (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Johannes Fähndrich
    • 1
  • Sebastian Ahrndt
    • 1
  • Sahin Albayrak
    • 1
  1. 1.DAI LabBerlin Institute of TechnologyBerlinGermany

Personalised recommendations