BioClass: A Tool for Biomedical Text Classification

  • R. Romero
  • A. Seara Vieira
  • E. L. Iglesias
  • L. Borrajo
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 294)


Traditional search engines are not efficient enough to extract useful information from scientific text databases. Therefore, it is necessary to develop advanced information retrieval software tools that allow for further classification of the scientific texts. The aim of this work is to present BioClass, a freely available graphic tool for biomedical text classification. With BioClass an user can parameterize, train and test different text classifiers to determine which technique performs better according to the document corpus. The framework includes data balancing and attribute reduction techniques to prepare the input data and improve the classification efficiency. Classification methods analyze documents by content and differentiate those that are best suited to the user requeriments. BioClass also offers graphical interfaces to get conclusions simply and easily.


Biomedical text mining tool Text classification Bioinformatics Computer-based software development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Longman (1999)Google Scholar
  2. 2.
    Tan, S.: Neighbor-weighted k-nearest neighbor for unbalanced text corpus. Expert Systems with Applications 28(4), 667–671 (2005)CrossRefGoogle Scholar
  3. 3.
    Anand, A., Pugalenthi, G., Fogel, G.B., Suganthan, P.N.: An approach for classification of highly imbalanced data using weighting and undersampling. Amino Acids 39, 1385–1391 (2010)CrossRefGoogle Scholar
  4. 4.
    Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations 6(1), 1–6 (2004)CrossRefGoogle Scholar
  5. 5.
    Garner, S.R.: Weka: The waikato environment for knowledge analysis. In: Proc. of the New Zealand Computer Science Research Students Conference, pp. 57–64 (1995)Google Scholar
  6. 6.
    Zhang, J., Mani, I.: knn approach to unbalanced data distributions: A case study involving information extraction. In: Proceedings of the ICML 2003 Workshop on Learning from Imbalanced Datasets (2003)Google Scholar
  7. 7.
    Hall, M.A.: Correlation-based Feature Subset Selection for Machine Learning. PhD thesis, Department of Computer Science, University of Waikato, Hamilton, New Zealand (April 1999)Google Scholar
  8. 8.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001)zbMATHGoogle Scholar
  9. 9.
    Liu, H., Setiono, R.: A probabilistic approach to feature selection - a filter solution. In: 13th International Conference on Machine Learning, pp. 319–327 (1996)Google Scholar
  10. 10.
    Lorenzo, J.: Selección de Atributos en Aprendizaje Automático basado en la Teoría de la Información. PhD thesis, Faculty of Computer Science, Univ. of Las Palmas (2002)Google Scholar
  11. 11.
    Holte, R.C.: Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Machine Learning 11(1), 63–90 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer (2002)Google Scholar
  13. 13.
    Hirschman, L., Yeh, A., Blaschke, C., Valencia, A.: Overview of biocreative: critical assessment of information extraction for biology. BMC Bioinformatics 6(suppl.1), s1 (2005)Google Scholar
  14. 14.
    Ando, R.K., Dredze, M., Zhang, T.: Trec 2005 genomics track experiments at ibm watson. In: Proceedings of TREC 2005. NIST Special Publication (2005)Google Scholar
  15. 15.
    Collier, N., Hahn, U., Rebholz-Schuhmann, D., Rinaldi, F., Pyysalo, S. (eds.): Proceedings of the Fourth International Symposium for Semantic Mining in Biomedicine, Cambridge, United Kingdom. CEUR Workshop Proceedings, vol. 714. (October 2010)Google Scholar
  16. 16.
    Osuna, E., Freund, R., Girosi, F.: Support vector machines: Training and applications. Technical report, Cambridge, MA, USA (1997)Google Scholar
  17. 17.
    Domingos, P., Pazzani, M.: On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning 29, 103–130 (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  19. 19.
    Glez-Peña, D., Reboiro-Jato, M., Maia, P., Rocha, M., Díaz, F., Fdez-Riverola, F.: Aibench: A rapid application development framework for translational research in biomedicine. Comput. Methods Prog. Biomed. 98, 191–203 (2010)CrossRefGoogle Scholar
  20. 20.
    Chang, C., Lin, C.: LIBSVM: a library for support vector machines (2001)Google Scholar
  21. 21.
    Demšar, J., Zupan, B., Leban, G., Curk, T.: Orange: From experimental machine learning to interactive data mining. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 537–539. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • R. Romero
    • 1
  • A. Seara Vieira
    • 1
  • E. L. Iglesias
    • 1
  • L. Borrajo
    • 1
  1. 1.Computer Science Dept., Escola Superior de Enxeñería InformáticaUniv. of VigoOurenseSpain

Personalised recommendations