Networking the Way towards Antimicrobial Combination Therapies

  • Paula Jorge
  • Maria Olívia Pereira
  • Anália Lourenc̨o
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 294)

Abstract

The exploration of new antimicrobial combinations is a pressing concern for Clinical Microbiology due to the growing number of resistant strains emerging in healthcare settings and in the general community. Researchers are screening agents with alternative modes of action and interest is rising for the potential of antimicrobial peptides (AMPs). This work presents the first ever network reconstruction of AMP combinations reported in the literature fighting Pseudomonas aeruginosa infections. The network, containing 193 combinations of AMPs with 39 AMPs and 154 traditional antibiotics, is expected to help in the design of new studies, notably by unveiling different mechanisms of action and helping in the prediction of new combinations and synergisms. The challenges faced in the attempted text-mining approaches and other considerations regarding the manual curation of the data are pointed out, reflecting about the future automation of this type of reconstruction as means to widen the scope of analysis.

Keywords

Antimicrobial peptides drug synergism interaction network Pseudomonas aeruginosa infections 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saiman, L.: Clinical utility of synergy testing for multidrug-resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis: “the motion for.”. Paediatr. Respir. Rev. 8, 249–255 (2007)CrossRefGoogle Scholar
  2. 2.
    Jorge, P., Lourenço, A., Pereira, M.O.: New trends in peptide-based anti-biofilm strategies: a review of recent achievements and bioinformatic approaches. Biofouling 28, 1033–1061 (2012)CrossRefGoogle Scholar
  3. 3.
    Wimley, W.C., Hristova, K.: Antimicrobial peptides: successes, challenges and unanswered questions. J. Membr. Biol. 239, 27–34 (2011)CrossRefGoogle Scholar
  4. 4.
    Lai, Y., Gallo, R.L.: AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 30, 131–141 (2009)CrossRefGoogle Scholar
  5. 5.
    Yeh, P.J., Hegreness, M.J., Aiden, A.P., Kishony, R.: Drug interactions and the evolution of antibiotic resistance. Nat. Rev. Microbiol. 7, 460–466 (2009)CrossRefGoogle Scholar
  6. 6.
    Csermely, P., Agoston, V., Pongor, S.: The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol. Sci. 26, 178–182 (2005)CrossRefGoogle Scholar
  7. 7.
    Percha, B., Altman, R.B.: Informatics confronts drug-drug interactions. Trends Pharmacol. Sci. 34, 178–184 (2013)CrossRefGoogle Scholar
  8. 8.
    Chen, H., Sharp, B.M.: Content-rich biological network constructed by mining PubMed abstracts. BMC Bioinformatics 5, 147 (2004)CrossRefGoogle Scholar
  9. 9.
    Wei, C.-H., Kao, H.-Y., Lu, Z.: PubTator: a web-based text mining tool for assisting biocuration. Nucleic Acids Res 41, W518–W522 (2013)Google Scholar
  10. 10.
    Fey, P.D.: Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections? Curr. Opin. Microbiol. 13, 610–615 (2010)CrossRefGoogle Scholar
  11. 11.
    Li, J., Nation, R.L., Turnidge, J.D., Milne, R.W., Coulthard, K., Rayner, C.R., Paterson, D.L.: Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis. 6, 589–601 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Paula Jorge
    • 1
  • Maria Olívia Pereira
    • 1
  • Anália Lourenc̨o
    • 1
    • 2
  1. 1.CEB - Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  2. 2.ESEI - Escuela Superior de Ingeniería Informática, Edificio PolitécnicoOurenseSpain

Personalised recommendations