Permuted Scaled Matching

  • Ayelet Butman
  • Noa Lewenstein
  • J. Ian Munro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8486)


Scaled matching and permutation matching are two well known paradigms in the domain of pattern matching. Scaled matching refers to finding an occurrence of a pattern which is enlarged proportionally by some scale k within a larger text. Permutation matching is the problem of finding all substrings within a text where the character statistics of the substring and the pattern are the same. Permutation matching is easy, while scaled matching requires innovative solutions. One interesting setting of applications is the merge of the two. The problem of scaled permuted matching (i.e. first permuting and then scaling) has been addressed and solved optimally. However, it was left as an open problem whether there are efficient algorithms for permuted scaled matching. In this paper we solve the problem efficiently in a deterministic setting and optimally in a randomized setting.


Pattern Match String Match Binary Search Tree Deterministic Setting Approximate String Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amir, A., Apostolico, A., Landau, G.M., Satta, G.: Efficient text fingerprinting via parikh mapping. J. Discrete Algorithms 1(5-6) (2003)Google Scholar
  2. 2.
    Amir, A., Butman, A., Lewenstein, M.: Real scaled matching. Inf. Process. Lett. 70(4), 185–190 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Amir, A., Butman, A., Lewenstein, M., Porat, E.: Real two dimensional scaled matching. Algorithmica 53(3), 314–336 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Amir, A., Butman, A., Lewenstein, M., Porat, E., Tsur, D.: Efficient one-dimensional real scaled matching. J. Discrete Algorithms 5(2), 205–211 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Amir, A., Călinescu, G.: Alphabet-independent and scaled dictionary matching. J. Algorithms 36(1), 34–62 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Amir, A., Chencinski, E.: Faster two dimensional scaled matching. Algorithmica 56(2), 214–234 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Amir, A., Landau, G.M., Vishkin, U.: Efficient pattern matching with scaling. J. Algorithms 13(1), 2–32 (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    Boyer, R.S., Strother Moore, J.: A fast string searching algorithm. Commun. ACM 20(10), 762–772 (1977)CrossRefzbMATHGoogle Scholar
  9. 9.
    Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: Algorithms for jumbled pattern matching in strings. Int. J. Found. Comput. Sci. 23(2), 357–374 (2012)CrossRefzbMATHGoogle Scholar
  10. 10.
    Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: On approximate jumbled pattern matching in strings. Theory Comput. Syst. 50(1), 35–51 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Butman, A., Eres, R., Landau, G.M.: Scaled and permuted string matching. Inf. Process. Lett. 92(6), 293–297 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Cicalese, F., Fici, G., Lipták, Z.: Searching for jumbled patterns in strings. In: Stringology, pp. 105–117 (2009)Google Scholar
  13. 13.
    Cicalese, F., Laber, E., Weimann, O., Yuster, R.: Near linear time construction of an approximate index for all maximum consecutive sub-sums of a sequence. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 149–158. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Fisher, M.J., Paterson, M.S.: String matching and other products. In: Karp, R.M. (ed.) Complexity of Computation. SIAM AMS Proceeding, vol. 7, pp. 113–125 (1974)Google Scholar
  15. 15.
    Galil, Z., Seiferas, J.I.: Time-space-optimal string matching. J. Comput. Syst. Sci. 26(3), 280–294 (1983)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Sathishkumar, G.A., Ramachandran, S., Bhoopathy Bagan, K.: Image encryption using random pixel permutation by chaotic mapping. In: IEEE Symposium on Computers and Informatics (ISCI), pp. 247–251 (2012)Google Scholar
  17. 17.
    Jokinen, P., Tarhio, J., Ukkonen, E.: A comparison of approximate string matching algorithms. Softw., Pract. Exper. 26(12), 1439–1458 (1996)CrossRefGoogle Scholar
  18. 18.
    Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of repeated patterns in strings, trees and arrays. In: STOC, pp. 125–136 (1972)Google Scholar
  19. 19.
    Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM Journal of Research and Development 31(2), 249–260 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Knuth, D.E., Morris, J.H., Pratt, V.B.: Fast Pattern Matching in Strings. SIAM Journal on Computing 6(2), 323–350 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Moosa, T.M., Sohel Rahman, M.: Sub-quadratic time and linear space data structures for permutation matching in binary strings. J. Discrete Algorithms 10, 5–9 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Patidar, V., Purohit, G., Sud, K.K., Pareek, N.K.: Image encryption through a novel permutation-substitution scheme based on chaotic standard map. In: International Workshop on Chaos-Fractals Theories and Applications (IWCFTA), pp. 164–169 (2010)Google Scholar
  23. 23.
    Vishkin, U.: Deterministic sampling - a new technique for fast pattern matching. SIAM J. Comput. 20(1), 22–40 (1991)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ayelet Butman
    • 1
  • Noa Lewenstein
    • 2
  • J. Ian Munro
    • 3
  1. 1.Department of Computer ScienceHolon Institute of TechnologyIsrael
  2. 2.Department of Computer ScienceNetanya CollegeIsrael
  3. 3.Chertion School of Computer ScienceUniversity of WaterlooCanada

Personalised recommendations