Advertisement

Encodings for Range Majority Queries

  • Gonzalo Navarro
  • Sharma V. Thankachan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8486)

Abstract

We face the problem of designing a data structure that can report the majority within any range of an array A[1,n], without storing A. We show that Ω(n) bits are necessary for such a data structure, and design a structure using O(nlog* n) bits that answers majority queries in O(logn) time. We extend our results to τ-majorities.

Keywords

Query Time Range Mode Distinct Symbol Range Majority Range Minimum Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belazzougui, D., Gagie, T., Navarro, G.: Better space bounds for parameterized range majority and minority. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 121–132. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Bose, P., An, H.-C., Morin, P., Tang, Y.: Approximate range mode and range median queries. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 377–388. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Brodal, G.S., Fagerberg, R., Greve, M., López-Ortiz, A.: Online sorted range reporting. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 173–182. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Chan, T., Durocher, S., Larsen, K., Morrison, J., Wilkinson, B.: Linear-space data structures for range mode query in arrays. In: STACS, pp. 290–301 (2012)Google Scholar
  5. 5.
    Chan, T.M., Durocher, S., Skala, M., Wilkinson, B.T.: Linear-space data structures for range minority query in arrays. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 295–306. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Durocher, S., He, M., Munro, I., Nicholson, P., Skala, M.: Range majority in constant time and linear space. Inf. Comput. 222, 169–179 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Gagie, T., He, M., Munro, J.I., Nicholson, P.: Finding frequent elements in compressed 2d arrays and strings. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 295–300. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Greve, M., Jørgensen, A.G., Larsen, K.D., Truelsen, J.: Cell probe lower bounds and approximations for range mode. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. Part I, LNCS, vol. 6198, pp. 605–616. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Grossi, R., Iacono, J., Navarro, G., Raman, R., Rao Satti, S.: Encodings for range selection and top-k queries. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 553–564. Springer, Heidelberg (2013)Google Scholar
  11. 11.
    Karpinski, M., Nekrich, Y.: Searching for frequent colors in rectangles. In: CCCG (2008)Google Scholar
  12. 12.
    Ian Munro, J.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 37–42. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Petersen, H.: Improved bounds for range mode and range median queries. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 418–423. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Petersen, H., Grabowski, S.: Range mode and range median queries in constant time and sub-quadratic space. Inf. Process. Lett. 109(4), 225–228 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Raman, R., Raman, V., Srinivasa Rao, S.: Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Alg. 3(4), 43 (2007)CrossRefGoogle Scholar
  16. 16.
    Skala, M.: Array range queries. In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Munro Festschrift. LNCS, vol. 8066, pp. 333–350. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gonzalo Navarro
    • 1
  • Sharma V. Thankachan
    • 2
  1. 1.Dept. of Computer ScienceUniv. of ChileChile
  2. 2.Cheriton School of Computer ScienceUniv. of WaterlooCanada

Personalised recommendations