Computing k-th Lyndon Word and Decoding Lexicographically Minimal de Bruijn Sequence

  • Tomasz Kociumaka
  • Jakub Radoszewski
  • Wojciech Rytter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8486)


Let Σ be a finite ordered alphabet. We present polynomial-time algorithms for computing the k-th in the lexicographic order Lyndon word of a given length n over Σ and counting Lyndon words of length n that are smaller than a given word. We also use the connections between Lyndon words and minimal de Bruijn sequences (theorem of Fredricksen and Maiorana) to develop the first polynomial time algorithm for decoding minimal de Bruijn sequence of any rank n (it determines the position of an arbitrary word of length n within the de Bruijn sequence). Our tools mostly rely on combinatorics on words and automata theory.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonomo, S., Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: Suffixes, conjugates and Lyndon words. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 131–142. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Crochemore, M., Iliopoulos, C.S., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: Extracting powers and periods in a word from its runs structure. Theor. Comput. Sci. (2013), doi:10.1016/j.tcs.2013.11.018Google Scholar
  3. 3.
    Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press (1994)Google Scholar
  4. 4.
    Duval, J.-P.: Génération d’une section des classes de conjugaison et arbre des mots de Lyndon de longueur bornée. Theor. Comput. Sci. 60, 255–283 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chung, R.G.F., Diaconis, P.: Universal cycles for combinatorial structures. Discrete Mathematics 110, 43–59 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Fredricksen, H., Kessler, I.J.: An algorithm for generating necklaces of beads in two colors. Discrete Mathematics 61(2-3), 181–188 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete Mathematics 23(3), 207–210 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Hin Au, Y.: Shortest sequences containing primitive words and powers. ArXiv e-prints (April 2009)Google Scholar
  9. 9.
    Knuth, D.E.: The Art of Computer Programming, vol. 4, Fascicle 2. Addison-Wesley (2005)Google Scholar
  10. 10.
    Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)zbMATHGoogle Scholar
  11. 11.
    Mitchell, C.J., Etzion, T., Paterson, K.G.: A method for constructing decodable de Bruijn sequences. IEEE Transactions on Information Theory 42(5), 1472–1478 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Mucha, M.: Lyndon words and short superstrings. In: Khanna, S. (ed.) SODA, pp. 958–972. SIAM (2013)Google Scholar
  13. 13.
    Radoszewski, J.: Generation of lexicographically minimal de Bruijn sequences with prime words. Master’s thesis, University of Warsaw (2008) (in Polish)Google Scholar
  14. 14.
    Ruskey, F., Savage, C.D., Wang, T.M.Y.: Generating necklaces. J. Algorithms 13(3), 414–430 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Tuliani, J.: De Bruijn sequences with efficient decoding algorithms. Discrete Mathematics 226(1-3), 313–336 (2001)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tomasz Kociumaka
    • 1
  • Jakub Radoszewski
    • 1
  • Wojciech Rytter
    • 1
    • 2
  1. 1.Faculty of Mathematics, Informatics and MechanicsUniversity of WarsawWarsawPoland
  2. 2.Faculty of Mathematics and Computer ScienceCopernicus UniversityToruńPoland

Personalised recommendations