Advertisement

A really Simple Approximation of Smallest Grammar

  • Artur Jeż
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8486)

Abstract

We present a really simple linear-time algorithm constructing a context-free grammar of size \(\mathcal{O}(g log (N/g))\) for the input string, where N is the size of the input string and g the size of the optimal grammar generating this string. The algorithm works for arbitrary size alphabets, but the running time is linear when the alphabet Σ of the input string can be identified with numbers from {1,…, N }. Algorithms with such an approximation guarantee and running time are known, however all of them were non-trivial and their analyses involved. The here presented algorithm computes the LZ77 factorisation (of size l) and transforms it in phases to a grammar. In each phase it maintains an LZ77-like factorisation of the word with at most l factors as well as additional \(\mathcal{O}(l)\) letters. In one phase in a greedy way (by a left-to-right sweep) we choose a set of pairs of consecutive letters to be replaced with new symbols, i.e. nonterminals of the constructed grammar. We choose at least 2/3 of the letters in the word and there are \(\mathcal{O}(l)\) many different pairs among them. Hence there are \(\mathcal{O}(log N)\) phases, each introduces \(\mathcal{O}(l)\) nonterminals. A more precise analysis yields a bound \(\mathcal{O}(l log(N/l))\). As l ≤ g, this yields \(\mathcal{O}(g log(N/g))\).

Keywords

Grammar-based compression Construction of the smallest grammar SLP compression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Transactions on Information Theory 51(7), 2554–2576 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Jeż, A.: Approximation of grammar-based compression via recompression. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 165–176. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Jeż, A., Lohrey, M.: Approximation of smallest linear tree grammar. In: Mayr, E., Portier, N. (eds.) STACS. LIPIcs, vol. 24, pp. 445–457. Schloss Dagstuhl — Leibniz-Zentrum fuer Informatik (2014)Google Scholar
  4. 4.
    Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time lempel-ziv factorization: Simple, fast, small. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 189–200. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Data Compression Conference, pp. 296–305. IEEE Computer Society (1999)Google Scholar
  6. 6.
    Lohrey, M.: Algorithmics on SLP-compressed strings: A survey. Groups Complexity Cryptology 4(2), 241–299 (2012)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Rubin, F.: Experiments in text file compression. Commun. ACM 19(11), 617–623 (1976)CrossRefGoogle Scholar
  8. 8.
    Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theor. Comput. Sci. 302(1-3), 211–222 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based compression. J. Discrete Algorithms 3(2-4), 416–430 (2005)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Artur Jeż
    • 1
    • 2
  1. 1.Max Planck Institute für InformatikSaarbrückenGermany
  2. 2.Institute of Computer ScienceUniversity of WrocławPoland

Personalised recommendations