Computing Palindromic Factorizations and Palindromic Covers On-line

  • Tomohiro I
  • Shiho Sugimoto
  • Shunsuke Inenaga
  • Hideo Bannai
  • Masayuki Takeda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8486)

Abstract

A palindromic factorization of a string w is a factorization of w consisting only of palindromic substrings of w. In this paper, we present an on-line O(n logn)-time O(n)-space algorithm to compute smallest palindromic factorizations of all prefixes of w, where n is the length of a given string w. We then show how to extend this algorithm to compute smallest maximal palindromic factorizations of all prefixes of w, consisting only of maximal palindromes (non-extensible palindromic substring) of each prefix, in O(n logn) time and O(n) space, in an on-line manner. We also present an on-line O(n)-time O(n)-space algorithm to compute a smallest palindromic cover of w.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Hafeedh, A., Crochemore, M., Ilie, L., Kopylov, J., Smyth, W., Tischler, G., Yusufu, M.: A comparison of index-based Lempel-Ziv LZ77 factorization algorithms. ACM Computing Surveys 45(1), Article 5 (2012)Google Scholar
  2. 2.
    Alatabbi, A., Iliopoulos, C.S., Rahman, M.S.: Maximal palindromic factorization. In: Proc. PSC 2013, pp. 70–77 (2013)Google Scholar
  3. 3.
    Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic trees. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 73–84. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Apostolico, A., Breslauer, D., Galil, Z.: Parallel detection of all palindromes in a string. Theoretical Computer Science 141(1&2), 163–173 (1995)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus. iv. the quotient groups of the lower central series. Annals of Mathematics 68(1), 81–95 (1958)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, New York (1994)MATHGoogle Scholar
  7. 7.
    Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A subquadratic sequence alignment algorithm for unrestricted scoring matrices. SIAM J. Comput. 32(6), 1654–1673 (2003)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Goto, K., Bannai, H.: Simpler and faster Lempel Ziv factorization. In: Proc. DCC 2013, pp. 133–142 (2013)Google Scholar
  10. 10.
    I, T., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Faster Lyndon factorization algorithms for SLP and LZ78 compressed text. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 174–185. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Jansson, J., Sadakane, K., Sung, W.-K.: Compressed dynamic tries with applications to LZ-compression in sublinear time and space. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 424–435. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lightweight Lempel-Ziv parsing. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 139–150. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time Lempel-Ziv factorization: Simple, fast, small. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 189–200. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Kempa, D., Puglisi, S.J.: Lempel-Ziv factorization: Simple, fast, practical. In: Proc. ALENEX 2013, pp. 103–112 (2013)Google Scholar
  15. 15.
    Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theoretical Computer Science 410(51), 5365–5373 (2009)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Proc. FOCS 1999, pp. 596–604 (1999)Google Scholar
  17. 17.
    Kreft, S., Navarro, G.: LZ77-like compression with fast random access. In: Proc. DCC 2010, pp. 239–248 (2010)Google Scholar
  18. 18.
    Kufleitner, M.: On bijective variants of the Burrows-Wheeler transform. In: Proc. PSC 2009, pp. 65–79 (2009)Google Scholar
  19. 19.
    Manacher, G.K.: A new linear-time “on-line” algorithm for finding the smallest initial palindrome of a string. J. ACM 22(3), 346–351 (1975)CrossRefMATHGoogle Scholar
  20. 20.
    Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto, K.: Efficient algorithms to compute compressed longest common substrings and compressed palindromes. Theoretical Computer Science 410(8-10), 900–913 (2009)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Okanohara, D., Sadakane, K.: An online algorithm for finding the longest previous factors. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 696–707. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theoretical Computer Science 302(1-3), 211–222 (2003)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Starikovskaya, T.: Computing Lempel-Ziv factorization online. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 789–799. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Sugimoto, S., I, T., Inenaga, S., Bannai, H., Takeda, M.: Computing reversed Lempel-Ziv factorization online. In: Proc. PSC 2013. pp. 107–118 (2013)Google Scholar
  25. 25.
    Welch, T.A.: A technique for high-performance data compression. IEEE Computer 17(6), 8–19 (1984)CrossRefGoogle Scholar
  26. 26.
    Yamamoto, J., I, T., Bannai, H., Inenaga, S., Takeda, M.: Faster compact on-line Lempel-Ziv factorization. To appear in Proc. STACS 2014 (2013), preprint is availabe at http://arxiv.org/abs/1305.6095
  27. 27.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory IT-23(3), 337–349 (1977)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding. IEEE Transactions on Information Theory 24(5), 530–536 (1978)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tomohiro I
    • 1
    • 2
  • Shiho Sugimoto
    • 1
  • Shunsuke Inenaga
    • 1
  • Hideo Bannai
    • 1
  • Masayuki Takeda
    • 1
  1. 1.Department of InformaticsKyushu UniversityJapan
  2. 2.Japan Society for the Promotion of Science (JSPS)Japan

Personalised recommendations