Advertisement

Computing Palindromic Factorizations and Palindromic Covers On-line

  • Tomohiro I
  • Shiho Sugimoto
  • Shunsuke Inenaga
  • Hideo Bannai
  • Masayuki Takeda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8486)

Abstract

A palindromic factorization of a string w is a factorization of w consisting only of palindromic substrings of w. In this paper, we present an on-line O(n logn)-time O(n)-space algorithm to compute smallest palindromic factorizations of all prefixes of w, where n is the length of a given string w. We then show how to extend this algorithm to compute smallest maximal palindromic factorizations of all prefixes of w, consisting only of maximal palindromes (non-extensible palindromic substring) of each prefix, in O(n logn) time and O(n) space, in an on-line manner. We also present an on-line O(n)-time O(n)-space algorithm to compute a smallest palindromic cover of w.

Keywords

Data Compression Online Algorithm Arithmetic Progression Space Algorithm Online Manner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Hafeedh, A., Crochemore, M., Ilie, L., Kopylov, J., Smyth, W., Tischler, G., Yusufu, M.: A comparison of index-based Lempel-Ziv LZ77 factorization algorithms. ACM Computing Surveys 45(1), Article 5 (2012)Google Scholar
  2. 2.
    Alatabbi, A., Iliopoulos, C.S., Rahman, M.S.: Maximal palindromic factorization. In: Proc. PSC 2013, pp. 70–77 (2013)Google Scholar
  3. 3.
    Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic trees. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 73–84. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Apostolico, A., Breslauer, D., Galil, Z.: Parallel detection of all palindromes in a string. Theoretical Computer Science 141(1&2), 163–173 (1995)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus. iv. the quotient groups of the lower central series. Annals of Mathematics 68(1), 81–95 (1958)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, New York (1994)MATHGoogle Scholar
  7. 7.
    Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A subquadratic sequence alignment algorithm for unrestricted scoring matrices. SIAM J. Comput. 32(6), 1654–1673 (2003)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Goto, K., Bannai, H.: Simpler and faster Lempel Ziv factorization. In: Proc. DCC 2013, pp. 133–142 (2013)Google Scholar
  10. 10.
    I, T., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Faster Lyndon factorization algorithms for SLP and LZ78 compressed text. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 174–185. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Jansson, J., Sadakane, K., Sung, W.-K.: Compressed dynamic tries with applications to LZ-compression in sublinear time and space. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 424–435. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lightweight Lempel-Ziv parsing. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 139–150. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time Lempel-Ziv factorization: Simple, fast, small. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 189–200. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Kempa, D., Puglisi, S.J.: Lempel-Ziv factorization: Simple, fast, practical. In: Proc. ALENEX 2013, pp. 103–112 (2013)Google Scholar
  15. 15.
    Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theoretical Computer Science 410(51), 5365–5373 (2009)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Proc. FOCS 1999, pp. 596–604 (1999)Google Scholar
  17. 17.
    Kreft, S., Navarro, G.: LZ77-like compression with fast random access. In: Proc. DCC 2010, pp. 239–248 (2010)Google Scholar
  18. 18.
    Kufleitner, M.: On bijective variants of the Burrows-Wheeler transform. In: Proc. PSC 2009, pp. 65–79 (2009)Google Scholar
  19. 19.
    Manacher, G.K.: A new linear-time “on-line” algorithm for finding the smallest initial palindrome of a string. J. ACM 22(3), 346–351 (1975)CrossRefMATHGoogle Scholar
  20. 20.
    Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto, K.: Efficient algorithms to compute compressed longest common substrings and compressed palindromes. Theoretical Computer Science 410(8-10), 900–913 (2009)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Okanohara, D., Sadakane, K.: An online algorithm for finding the longest previous factors. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 696–707. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theoretical Computer Science 302(1-3), 211–222 (2003)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Starikovskaya, T.: Computing Lempel-Ziv factorization online. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 789–799. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Sugimoto, S., I, T., Inenaga, S., Bannai, H., Takeda, M.: Computing reversed Lempel-Ziv factorization online. In: Proc. PSC 2013. pp. 107–118 (2013)Google Scholar
  25. 25.
    Welch, T.A.: A technique for high-performance data compression. IEEE Computer 17(6), 8–19 (1984)CrossRefGoogle Scholar
  26. 26.
    Yamamoto, J., I, T., Bannai, H., Inenaga, S., Takeda, M.: Faster compact on-line Lempel-Ziv factorization. To appear in Proc. STACS 2014 (2013), preprint is availabe at http://arxiv.org/abs/1305.6095
  27. 27.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory IT-23(3), 337–349 (1977)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding. IEEE Transactions on Information Theory 24(5), 530–536 (1978)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tomohiro I
    • 1
    • 2
  • Shiho Sugimoto
    • 1
  • Shunsuke Inenaga
    • 1
  • Hideo Bannai
    • 1
  • Masayuki Takeda
    • 1
  1. 1.Department of InformaticsKyushu UniversityJapan
  2. 2.Japan Society for the Promotion of Science (JSPS)Japan

Personalised recommendations