Advertisement

Parameterized Complexity Analysis for the Closest String with Wildcards Problem

  • Danny Hermelin
  • Liat Rozenberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8486)

Abstract

The Closest String problem asks to find a string s which is not too far from each string in a set of m input strings, where the distance is taken as the Hamming distance. This well-studied problem has various applications in computational biology and drug design. In this paper, we introduce a new variant of Closest String where the input strings can contain wildcards that can match any letter in the alphabet, and the goal is to find a solution string without wildcards. We call this problem the Closest String with Wildcards problem, and we analyze it in the framework of parameterized complexity. Our study determines for each natural parameterization whether this parameterization yields a fixed-parameter algorithm, or whether such an algorithm is highly unlikely to exist.

More specifically, let m denote the number of input strings, each of length n, and let d be the given distance bound for the solution string. Furthermore, let k denote the minimum number of wildcards in any input string. We present fixed-parameter algorithms for the parameters m, n, and k + d, respectively. On the other hand, we then show that such results are unlikely to exist when k and d are taken as single parameters. This is done by showing that the problem is NP-hard already for k = 0 and d ≥ 2. Finally, to complement the latter result, we present a polynomial-time algorithm for the case of d = 1. Apart from this last result, all other results hold even when the strings are over a general alphabet.

Keywords

Parameterized Complexity Close String Binary String Solution String Input String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amir, A., Paryenty, H., Roditty, L.: Approximations and partial solutions for the consensus sequence problem. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 168–173. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Information Processing Letters 8(3), 121–123 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Chen, Z.Z., Wang, L.: Fast exact algorithms for the closest string and substring problems with application to the planted (l, d)-motif model. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(5), 1400–1410 (2011)CrossRefGoogle Scholar
  4. 4.
    Chen, Z.Z., Ma, B., Wang, L.: A three-string approach to the closest string problem. Journal of Computer and System Sciences 78(1), 164–178 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chimani, M., Woste, M., Böcker, S.: A closer look at the closest string and closest substring problem. In: ALENEX, pp. 13–24 (2011)Google Scholar
  6. 6.
    Dopazo, J., Rodríguez, A., Sáiz, J.C., Sobrino, F.: Design of primers for pcr ampiification of highly variable genomes. Computer Applications in the Biosciences: CABIOS 9(2), 123–125 (1993)Google Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)Google Scholar
  8. 8.
    Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM Journal of Computing 5(4), 691–703 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameterized intractability of motif search problems*. Combinatorica 26(2), 141–167 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  11. 11.
    Frances, M., Litman, A.: On covering problems of codes. Theory of Computing Systems 30(2), 113–119 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Gramm, J., Hüffner, F., Niedermeie, R.: Closest strings, primer design, and motif search. In: Currents in Computational Molecular Biology, Poster Abstracts of RECOMB, vol. 2002, pp. 74–75 (2002)Google Scholar
  13. 13.
    Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for closest string and related problems. Algorithmica 37(1), 25–42 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer Computations, 85–103 (1972)Google Scholar
  15. 15.
    Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 633–642 (1999)Google Scholar
  16. 16.
    Lenstra, W.: Integer programming with a fixed number of variables. Mathematics of Operations Research, 538–548 (1983)Google Scholar
  17. 17.
    Li, M., Ma, B., Wang, L.: On the closest string and substring problems. Journal of the ACM (JACM) 49(2), 157–171 (2002)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems. SIAM Journal on Computing 39(4), 1432–1443 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Marx, D.: Closest substring problems with small distances. SIAM Journal on Computing 38(4), 1382–1410 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  21. 21.
    Proutski, V., Holmes, E.C.: Primer master: A new program for the design and analysis of pcr primers. Computer Applications in the Biosciences: CABIOS 12, 253–255 (1996)Google Scholar
  22. 22.
    Stojanovic, N., Berman, P., Gumucio, D., Hardison, R., Miller, W.: A linear-time algorithm for the 1-mismatch problem. In: Rau-Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 126–135. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  23. 23.
    Wang, L., Zhu, B.: Efficient algorithms for the closest string and distinguishing string selection problems. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 261–270. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Zhao, R., Zhang, N.: A more efficient closest string problem. In: Bioinformatics and Computational Biology, pp. 210–215 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Danny Hermelin
    • 1
  • Liat Rozenberg
    • 2
  1. 1.Ben-Gurion UniversityIsrael
  2. 2.University of HaifaIsrael

Personalised recommendations