Advertisement

Order-Preserving Pattern Matching with k Mismatches

  • Paweł Gawrychowski
  • Przemysław Uznański
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8486)

Abstract

We study a generalization of the order-preserving pattern matching recently introduced by Kubica et al. (Inf. Process. Let., 2013) and Kim et al. (submitted to Theor. Comp. Sci.), where instead of looking for an exact copy of the pattern, we only require that the relative order between the elements is the same. In our variant, we additionally allow up to k mismatches between the pattern of length m and the text of length n, and the goal is to construct an efficient algorithm for small values of k. Our solution detects an order-preserving occurrence with up to k mismatches in \(\mathcal{O}(n(\log\log m+k\log\log k))\) time.

Keywords

Time Algorithm Pattern Match Weighted Version Maximal Path Direct Predecessor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belazzougui, D., Pierrot, A., Raffinot, M., Vialette, S.: Single and multiple consecutive permutation motif search. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 66–77. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Bose, P., Buss, J.F., Lubiw, A.: Pattern matching for permutations. Inf. Process. Lett. 65(5), 277–283 (1998)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Crochemore, M., et al.: Order-preserving incomplete suffix trees and order-preserving indexes. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 84–95. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Han, Y.: Deterministic sorting in O(nloglogn) time and linear space. In: Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC 2002, pp. 602–608. ACM, New York (2002)CrossRefGoogle Scholar
  6. 6.
    Hazay, C., Lewenstein, M., Sokol, D.: Approximate parameterized matching. ACM Transactions on Algorithms 3(3) (2007)Google Scholar
  7. 7.
    Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest common subsequences. Commun. ACM 20(5), 350–353 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53(6), 918–936 (2006)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kim, J., Eades, P., Fleischer, R., Hong, S.H., Iliopoulos, C.S., Park, K., Puglisi, S.J., Tokuyama, T.: Order preserving matching. CoRR abs/1302.4064 (2013)Google Scholar
  10. 10.
    Kubica, M., Kulczyski, T., Radoszewski, J., Rytter, W., Wale, T.: A linear time algorithm for consecutive permutation pattern matching. Inf. Process. Lett. 113(12), 430–433 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Paweł Gawrychowski
    • 1
  • Przemysław Uznański
    • 2
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.LIF, CNRS and Aix-Marseille UniversitéMarseilleFrance

Personalised recommendations