Indexed Geometric Jumbled Pattern Matching

  • Stephane Durocher
  • Robert Fraser
  • Travis Gagie
  • Debajyoti Mondal
  • Matthew Skala
  • Sharma V. Thankachan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8486)


We consider how to preprocess n colored points in the plane such that later, given a multiset of colors, we can quickly find an axis-aligned rectangle containing a subset of the points with exactly those colors, if one exists. We first give an index that uses o(n 4) space and o (n) query time when there are \({\mathcal{O}({1})}\) distinct colors. We then restrict our attention to the case in which there are only two distinct colors. We give an index that uses \({\mathcal{O}({n})}\) bits and \({\mathcal{O}({1})}\) query time to detect whether there exists a matching rectangle. Finally, we give a \({\mathcal{O}({n})}\)-space index that returns a matching rectangle, if one exists, in \({\mathcal{O}({\lg ^2 n / \lg \lg n})}\) time.


Binary Search Binary String Query Time Distinct Color Connected Subgraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badkobeh, G., Fici, G., Kroon, S., Lipták, Z.: Binary jumbled string matching for highly run-length compressible texts. IPL 113, 604–608 (2013)CrossRefzbMATHGoogle Scholar
  2. 2.
    Barba, L., et al.: On k-enclosing objects in a coloured point set. In: Proc. CCCG, 229–234 (2013)Google Scholar
  3. 3.
    Björklund, A., Kaski, P., Kowalik, L.: Probably optimal graph motifs. In: Proc. STACS, pp. 20–31 (2013)Google Scholar
  4. 4.
    Brodal, G.S., Gfeller, B., Jørgensen, A.G., Sanders, P.: Towards optimal range medians. TCS 412, 2588–2601 (2011)CrossRefzbMATHGoogle Scholar
  5. 5.
    Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: Algorithms for jumbled pattern matching in strings. IJFCS 23, 357–374 (2012)zbMATHGoogle Scholar
  6. 6.
    Butman, A., Eres, R., Landau, G.M.: Scaled and permuted string matching. IPL 92, 293–297 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Chan, T.M., Wilkinson, B.T.: Adaptive and approximate orthogonal range counting. In: Proc. SODA, pp. 241–251 (2013)Google Scholar
  8. 8.
    Cicalese, F., Fici, G., Lipták, Z.: Searching for jumbled patterns in strings. In: Proc. PSC, pp. 105–117 (2009)Google Scholar
  9. 9.
    Cicalese, F., Laber, E., Weimann, O., Yuster, R.: Near linear time construction of an approximate index for all maximum consecutive sub-sums of a sequence. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 149–158. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Cicalese, F., Gagie, T., Giaquinta, E., Laber, E.S., Lipták, Z., Rizzi, R., Tomescu, A.I.: Indexes for jumbled pattern matching in strings, trees and graphs. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 56–63. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for finding connected motifs in vertex-colored graphs. JCSS 77, 799–811 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Fici, G., Lipták, Z.: On prefix normal words. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 228–238. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Gagie, T., Hermelin, D., Landau, G.M., Weimann, O.: Binary jumbled pattern matching on trees and tree-like structures. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 517–528. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Giaquinta, E., Grabowski, S.: New algorithms for binary jumbled pattern matching. IPL 113, 538–542 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kociumaka, T., Radoszewski, J., Rytter, W.: Efficient indexes for jumbled pattern matching with constant-sized alphabet. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 625–636. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Lacroix, V., Fernandes, C.G., Sagot, M.-F.: Motif search in graphs: Application to metabolic networks. TCBB 3, 360–368 (2006)Google Scholar
  17. 17.
    Moosa, T.M., Rahman, M.S.: Sub-quadratic time and linear space data structures for permutation matching in binary strings. JDA 10, 5–9 (2012)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Stephane Durocher
    • 1
  • Robert Fraser
    • 1
  • Travis Gagie
    • 2
  • Debajyoti Mondal
    • 1
  • Matthew Skala
    • 1
  • Sharma V. Thankachan
    • 3
  1. 1.Department of Computer ScienceUniversity of ManitobaCanada
  2. 2.Department of Computer ScienceUniversity of HelsinkiFinland
  3. 3.Cheriton School of Computer ScienceUniversity of WaterlooCanada

Personalised recommendations